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A TREATISE ON THE THEORY OF
INVARIANTS

OLIVER E. GLENN, PH.D.
PROFESSOR OF MATHEMATICS IN THE UNIVERSITY OF PENNSYLVANIA



PREFACE

The object of this book is, first, to present in a volume of medium size the
fundamental principles and processes and a few of the multitudinous appli-
cations of invariant theory, with emphasis upon both the nonsymbolical and
the symbolical method. Secondly, opportunity has been taken to emphasize a
logical development of this theory as a whole, and to amalgamate methods of
English mathematicians of the latter part of the nineteenth century-Boole, Cay-
ley, Sylvester, and their contemporaries—and methods of the continental school,
associated with the names of Aronhold, Clebsch, Gordan, and Hermite.

The original memoirs on the subject, comprising an exceedingly large and
classical division of pure mathematics, have been consulted extensively. I have
deemed it expedient, however, to give only a few references in the text. The
student in the subject is fortunate in having at his command two large and
meritorious bibliographical reports which give historical references with much
greater completeness than would be possible in footnotes in a book. These are
the article “Invariantentheorie” in the “Enzyklopadie der mathematischen Wis-
senschaften” (I B 2), and W. Fr. Meyer’s “Bericht iiber den gegenwértigen Stand
der Invarianten-theorie” in the “Jahresbericht der deutschen Mathematiker-
Vereinigung” for 1890-1891.

The first draft of the manuscript of the book was in the form of notes for
a course of lectures on the theory of invariants, which I have given for several
years in the Graduate School of the University of Pennsylvania.

The book contains several constructive simplifications of standard proofs
and, in connection with invariants of finite groups of transformations and the
algebraical theory of ternariants, formulations of fundamental algorithms which
may, it is hoped, be of aid to investigators.

While writing I have had at hand and have frequently consulted the following
texts:

e CLEBSCH, Theorie der bindren Formen (1872).
e CLEBSCH, LINDEMANN, Vorlesungen uher Geometrie (1875).
e DICKSON, Algebraic Invariants (1914).

e DICKSON, Madison Colloquium Lectures on Mathematics (1913). I. In-
variants and the Theory of lumbers.

e ELLIOTT, Algebra of Quantics (1895).
e FAA DI BRUNO, Theorie des formes binaires (1876).
e GORDAN, Vorlesungen iiber Invariantentheorie (1887).

e GRACE and YOUNG, Algebra of Invariants (1903).

W. FR. MEYER, Allgemeine Formen und Invariantentheorie (1909).



e W. FR. MEYER, Apolaritdt und rationale Curven (1883).

e SALMON, Lessons Introductory to Modern Higher Algebra (1859; 4th
ed., 1885).

e STUDY, Methoden zur Theorie der temaren Formen (1889).

0. E. GLENN
PHILADELPHIA, PA.
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Chapter 1

THE PRINCIPLES OF
INVARIANT THEORY

1.1 The nature of an invariant. Illustrations

We consider a definite entity or system of elements, as the totality of points
in a plane, and suppose that the system is subjected to a definite kind of a
transformation, like the transformation of the points in a plane by a linear
transformation of their coordinates. Invariant theory treats of the properties of
the system which persist, or its elements which remain unaltered, during the
changes which are imposed upon the system by the transformation.

By means of particular illustrations we can bring into clear relief several
defining properties of an invariant.

1.1.1 An invariant area.

Given a triangle ABC' drawn in the Cartesian plane with a vertex at the origin.
Suppose that the coordinates of A are (x1,y;); those of B (z2,y2). Then the
area A is

1
A= 5(1‘1?42 — T2y1),
or, in a convenient notation,

1
A= 5(5531)-

Let us transform the system, consisting of all points in the plane, by the
substitutions

=Mz +myy = Xoa’ + poy'.

The area of the triangle into which A is then carried will be



1 1
A= 5(x1y1 — zhy)) = 5(9:’1/)7

and by applying the transformations directly to A,

A= ()\1112 - )‘QMI)A/~ (1)

If we assume that the determinant of the transformation is unity,

D=(\p) =1,
then

A =A.

Thus the area A of the triangle ABC' remains unchanged under a transfor-
mation of determinant unity and is an invariant of the transformation. The
triangle itself is not an invariant, but is carried into abC. The area A is called
an absolute invariant if D = 1. If D # [, all triangles having a vertex at the
origin will have their areas multiplied by the same number D~! under the trans-
formation. In such a case A is said to be a relative invariant. The adjoining
figure illustrates the transformation of A(5,6), B(4,6), C(0,0) by means of

r=a +vy,y=2"+2y.



1.1.2 An invariant ratio.

In T the points (elements) of the transformed system are located by means of
two lines of reference, and consist of the totality of points in a plane. For a
second illustration we consider the system of all points on a line EF.

P Q C D 7

E

We locate a point C' on this line by referring it to two fixed points of reference
P, Q. Thus C will divide the segment PQ) in a definite ratio. This ratio,

PC/CQ,

is unique, being positive for points C' of internal division and negative for points
of external division. The point C' is said to have for coordinates any pair of
numbers (x1,x2) such that

T PC

T2 CQ
where A is a multiplier which is constant for a given pair of reference points
P, Q. Let the segment PC be positive and equal to p. Suppose that the point
C' is represented by the particular pair (p1,p2), and let D(¢1,g=2) be any other
point. Then we can find a formula for the length of CD. For,

cQ_rc_ PQ . p
P2 A1 Api+p2 Apr+p2
and
be_ _n
q2 A1+ @2
Consequently
CD=CQ=DQ= Au(gp) 3)

(Aq1 +q2)(Ap1 + p2)
Theorem. The anharmonic ratio {CDEF} of four points C(p2,p2), D(q1,q2),

E(r1,r2), F(61,82), defined by

CD-EF
CF-ED’

18 an tnvariant under the general linear transformation

{CDEF} =

Tz = Mz + pazh, e = Ao + paxh, (M) # 0. (31)



In proof we have from (3)

_ (ap)(or)
tCPEEY = o) ar)
But under the transformation (cf. (1)),
(gp) = (M) (d'p"), (4)

and so on. Also, C, D, E, F are transformed into the points
Cl(pllvp/2)7 Dl(qiv (]’2), El(r/lv 7nl2)7 F/(Sllv 5/2)»

respectively. Hence

_ (gp)(sr) _ (¢'p")(s'r") _ 2oY8 n2 ol
{ODEFY = (oan ~ wogr) — CPEFY

and therefore the anharmonic ratio is an absolute invariant.

1.1.3 An invariant discriminant.

A homogeneous quadratic polynomial,
f = apx? + 2a12179 + a3,

when equated to zero, is an equation having two roots which are values of
the ratio x1/x2. According to II we may represent these two ratios by two
points C(p1,p2), D(q1,g2) on the line EF. Thus we may speak of the roots
(p1,p2), (q1,g2) of f.
These two points coincide if the discriminant of f vanishes, and conversely;
that is if
D = 4(apag — a?) =0

If f be transformed by T, the result is a quadratic polynomial in z, 25, or

' = apx’? + 2a\ 2l + abal,

Now if the points C, D coincide, then the two transformed points C’, D’ also
coincide. For if CD =0, (3) gives (¢p) = 0. Then (4) gives (¢'p’) = 0, since by
hypothesis (Au) # 0. Hence, as stated, C'D’ = 0.

It follows that the discriminant D’ of f’ must vanish as a consequence of the
vanishing of D. Hence

D' =KD.

The constant K may be determined by selecting in place of f the particular
quadratic f; = 2zjxy for which D = —4. Transforming f; by T we have

f1 =2 1 Aex] 4+ 2( A2 + Aopr ) T120 + 241 f1273;

4



and the discriminant of f{ is D’ = —4(Au)?. Then the substitution of these
particular discriminants gives

—4(\p)? = —4K,
K = ()2

We may also determine K by applying the transformation T" to f and com-
puting the explicit form of f’. We obtain

ag = a())\% + 2&1)\1)\2 + a2>\§,
a; = agA1p1 + aq ()\1/112 + )\2,&1) + as As iz, (5)
ab = aop + 2a1pu pip + aspis,

and hence by actual computation,

4(agay — af?) = 4(A)* (agaz — ai),

or, as above,

D' = (\u)?D.

Therefore the discriminant of f is a relative invariant of T' (Lagrange 1773); and,
in fact, the discriminant of f’ is always equal to the discriminant of f multiplied
by the square of the determinant of the transformation..

Preliminary Geometrical Definition.

If there is associated with a geometric figure a quantity which is left unchanged
by a set of transformations of the figure, then this quantity is called an absolute
invariant of the set (Halphen). In I the set of transformations consists of all
linear transformations for which (Au) = 1. In IT and III the set consists of all
for which (Ap) # 0.

1.1.4 An Invariant Geometrical Relation.
Let the roots of the quadratic polynomial f be represented by the points
(p1,p2), (r1,r2), and let ¢ be a second polynomial,

(b = bol‘% + 2b1x120 + ngg,

whose roots are represented by (¢1,q2), (s1,$2), or, in a briefer notation, by
(¢), (s). Assume that the anharmonic ratio of the four points (p), (¢), (r), (s),
equals minus one,

AP (6)



The point pairs f = 0,¢ = 0 are then said to be harmonic conjugates. We have
from (6)

2h = 2parasiqr + 2p1ris2qe — (P172 + par1)(qis2 + g2s1) = 0.

But

= (371172 - $2p1)($17"2 - 3327"1)7

f
¢ = (x192 — x2q1) (@152 — T251).

Hence

ap =p2, 2a1 =—(per1 +pire), a2 =piri,

bo = q2s2,  2b1 = —(q281 + q152), b2 = qisu,
and by substitution in (2h) we obtain

h = aobg — 2@1[)1 + QQbO =0. (7)

That h is a relative invariant under T is evident from (6): for under the trans-
formation f, ¢ become, respectively,

f'= (@hpy — 2opy) (@hry — wyry),

¢' = (2hdp — w5q1) (25 — 255)),

where
P = pop1 — D2, Py = —Aap1 + Aipe,
TL = fioT1 — paT2, Ty = —Agr1 + Ai7Tg,
Hence
(') (s'T") + (') (') = (Aw)?[(qp) (s7) + (sp)(qr)].
That is,

b = (Au)h.

Therefore the bilinear function h of the coefficients of two quadratic polyno-
mials, representing the condition that their root pairs be harmonic conjugates,
s a relative invariant of the transformation T. It is sometimes called a joint
invariant, or simultaneous invariant of the two polynomials under the transfor-
mation.



1.1.5 An invariant polynomial.

To the pair of polynomials f, ¢, let a third quadratic polynomial be adjoined,

P = cox% + 2¢c1x2T2 + ch§
= (iL’l’UQ — fﬂQUl)(Zl’Ug — 302’1)1).
Let the points (u1,us) (v1,v2), be harmonic conjugate to the pair (p), (r); and
also to the pair (¢), (s). Then
coas — 2c1aq1 — caag =0,
Cob2 — 261b1 - CQbo :0,

com% + 2c1T170 + c2x§ =0.
Elimination of the ¢ coefficients gives

ao ai az

C = |by b1 by| =0 (8)

x% —T1T2 JJ%

This polynomial,
C = (agh — a1bo)$§ + (apba — agbp)x122 + (a1be — a2b1)$§7

is the one existent quadratic polynomial whose roots form a common harmonic
conjugate pair, to each of the pairs f, ¢.

We can prove readily that C' is an invariant of the transformation 7. For we
have in addition to the equations (5),

O = boA? + 2b1 A1 Ao + bo A2,
by = boAip + b1 (Aipa + Aapir) + bodopua, (9)
by = bopt + 2b1pu1pa + by

Also if we solve the transformation equations T for z7, x5 in terms of x1, x5 we
obtain

= (M) (pa1 — pa),
= (M) "M (= a1 + Mima), (10)

'
!
Lo

Hence when f, ¢ are transformed by 7', C' becomes

o (11)
{(aoA? + 2a1 M1 X2 4+ a23)[bo A1 pr 4 bi(A1po + Aopir) + baAopo]

—(boAT + 2b1 A1 Ao + baA3[ao A1 p1 + a1 (A1 pe + Aopir) + agAopo]}

X (M) 72 (p2ar — paaz)? + -



When this expression is multiplied out and rearranged as a polynomial in xq,
xa, it is found to be (Ap)C. That is,

C'=(\)C

and therefore C' is an invariant.

It is customary to employ the term invariant to signify a function of the co-
efficients of a polynomial, which is left unchanged, save possibly for a numerical
multiple, when the polynomial is transformed by 7. If the invariant function
involves the variables also, it is ordinarily called a covariant. Thus D in Il is a
relative invariant, whereas C' is a relative covariant.

The Inverse of a Linear Transformation.

The process (11) of proving by direct computation the invariancy of a function
we shall call verifying the invariant or covariant. The set of transformations
(10) used in such a verification is called the inverse of T and is denoted by T~1.

1.1.6 An invariant of three lines.

Instead of the Cartesian cotrdinates employed in I we may introduce homoge-
neous variables (z1, %2, x3) to represent a point P in a plane. These variables
may be regarded as the respective distances of N from the three sides of a
triangle of reference. Then the equations of three lines in the plane may be
written

a1171 + a12x2 + ajzrs = 0,
2171 + a2xa + agzwz = 0,

a3171 + asaxs + azzrs = 0.

The eliminant of these,

ail a2 @13

D =\aa a2 a3,

az1 az2 ass
evidently represents the condition that the lines be concurrent. For the lines are
concurrent if D = 0. Hence we infer from the geometry that D is an invariant,
inasmuch as the transformed lines of three concurrent lines by the following
transformations, S, are concurrent:

T1 = M) + s + v,
Stoxg = Aoz + poxh + ozl (Auv) #0. (12)
1 = A3} + pszh + vaxh.

To verify algebraically that D is an invariant we note that the transformed of

a;1%1 + aipTo + aizxrs (i =1,2,3),



by S is

(an M1 + aipdotaisAs)x] + (ainpn + aiops + aizps)zy + (a0
“+a;ov9 + (17;3’03)1'{3 (Z = ].7 2, 3) (13)

Thus the transformed of D is

a11A1 + a12A2 + a13A3  aripn + aiape +aizps  anivr + aale + aisvs

!
D" = |ag1 A1 + a2 + ag3A3  agipin + agopio + agspiz a1 + azalz + azsvs
az1 A1 + 322 + aszA3  asip1 + asapo + assps G311+ azala + assvs

= (Aw)D. (14)

The latter equality holds by virtue of the ordinary law of the product of two
determinants of the third order. Hence D is an invariant.

1.1.7 A Differential Invariant.

In previous illustrations the transformations introduced have been of the linear
homogeneous type. Let us next consider a type of transformation which is
not linear, and an invariant which represents the differential of the arc of a
plane curve or simply the distance between two consecutive points (z,y) and
(z + dx,y + dy) in the (z,y) plane.

We assume the transformation to be given by

' =X(z,y,0), ¥ =Y(z,y,a),

where the functions X, Y are two independent continuous functions of x, y and
the parameter a. We assume (a) that the partial derivatives of these functions
exist, and (b) that these are continuous. Also (¢) we define X, Y to be such
that when a = ag

X(xvyaaO) =, Y(l‘.y,ao) =Y.

Then let an increment da be added to ag and expand each function as a power
series in da by Taylor’s theorem. This gives

x’:X(x,y,ao)+M5a+~ua
6&0
Y (x, v,
yf:y@,y,amw(m.... (15)

Since it may happen that some of the partial derivatives of X, ¥ may vanish for
a = ap, assume that the lowest power of da in (15) which has a non-vanishing
coefficient is (da)¥, and write (§a)¥ = 6t. Then the transformation, which is
infinitesimal, becomes



I ' = x + &6t
"y =y + nit.

where £, n are continuous functions of x, y. The effect of operating I upon the
coordinates of a point P is to add infinitesimal increments to those coordinates,
viz.

ox = &6t
oy = not. (16)

Repeated operations with I produce a continuous motion of the point P along a
definite path in the plane. Such a motion may be called a stationary streaming
in the plane (Lie).

Let us now determine the functions &, 7, so that

o = dz* + dy?

shall be an invariant under I.
By means of I, o receives an infinitesimal increment do. In order that o
may be an absolute invariant, we must have

1
550 = dzddx + dyddy = 0,
or, since differential and variation symbols are permutable,
dxddx + dyddy = dxd€ + dydn = 0.

Hence
(€xdx + §ydy)dx + (nudx + n,dy)dy = 0.

Thus since dz and dy are independent differentials
§o =1y =0, & +n.=0.
That is, £ is free from = and 7 from y. Moreover
oy = Naa = &yy = 0.
Hence ¢ is linear in y, and 7 is linear in x; and also from

fy = Nz,
E=ay+p, n=—ax+n. (17)

Thus the most general infinitesimal transformation leaving o invariant is
I:2' =z+ (ay+ B)ot, v =y+ (—azx+7)it. (18)
Now there is one point in the plane which is left invariant, viz.
r=7v/a, y=-PB/a

10



The only exception to this is when o = 0. But the transformation is then
completely defined by

o' =+ Bot, Y =y+ 9,

and is an infinitesimal translation parallel to the coérdinate axes. Assuming
then that a # 0, we transform coordinate axes so that the origin is moved to
the invariant point. This transformation,

r=z+v/a, y=y-—PB/a,
leaves ¢ unaltered, and I becomes
¥ =x+ayst, y =y— azit. (19)

But (19) is simply an infinitesimal rotation around the origin. We may add
that the case a = 0 does not require to be treated as an exception since an
infinitesimal translation may be regarded as a rotation around the point at
infinity. Thus,

Theorem. The most general infinitesimal transformation which leaves o =
dx? +dy? invariant is an infinitesimal rotation around a definite invariant point
in the plane.

We may readily interpret this theorem geometrically by noting that if o is
invariant the motion is that of a rigid figure. As is well known, any infinitesimal
motion of a plane rigid figure in a plane is equivalent to a rotation around a
unique point in the plane, called the instantaneous center. The invariant point
of I is therefore the instantaneous center of the infinitesimal rotation.

L

The adjoining figure shows the invariant point (C') when the moving figure
is a rigid rod R one end of which slides on a circle S, and the other along a
straight line L. This point is the intersection of the radius produced through
one end of the rod with the perpendicular to L at the other end.

1.1.8 An Arithmetical Invariant.

Finally let us introduce a transformation of the linear type like

11



. _ / / . / !/
Tz = May + pixy, o2 = Aaxy + pay,

but one in which the coefficients A, i are positive integral residues of a prime
number p. Call this transformation 7;,. We note first that 7}, may be generated
by combining the following three particular transformations:

(a) x1 = o) +tah, 3 = x),
(b) x1 = 2!, 3 = A}, (20)

(¢) &1 = oy, @y = —2,
where ¢, A are any integers reduced modulo p. For (a) repeated gives
T = (2 + tah) + tal = 2 + 2tz xo = 7.
Repeated r times (a) gives, when rt = u (mod p),
(d) x1 = 2 +uxhy, xo = .
Then (¢) combined with (d) becomes
(e) 1 = —uzh + 2}, 1o = —2.

Proceeding in this way 7}, may be built up.
Let
f = apx? + 2a11179 + a3,

where the coefficients are arbitrary variables; and
g = apx} + ay (2320 + 2123) + aga), (21)

and assume p = 3. Then we can prove that g is an arithmetical covariant; in
other words a covariant modulo 3. This is accomplished by showing that if f be
transformed by T3 then ¢’ will be identically congruent to g modulo 3. When f
is transformed by (c) we have

[ = agx? — 2a,2 7l 4 apz’y.

That is,
! !/ !/
aO = ag, al = —aq, a2 = agp.

The inverse of (¢) is x4 = x1, 2] = —x2. Hence
/ 4 3, .3 4
9 = a2x5 + ar(x125 + x7T2) + G0T] = 9,

and g is invariant, under (c).
Next we may transform f by (a); and we obtain

/ / / 2
ag = ap, a3 = agt + ai, ay = aot” + 2a1t + asz.

12



The inverse of (a) is
Th = T9, T = x1 — tas.
Therefore we must have

g/ = ao(l'l — t$2)4 + ((Lot + al) [(.’El — t$2)3x2 + (1’1 - tl’g).’b%]

+ (aot?® + 2a1t + az)zs (22)

= apx] + a1 (z3zy + 2123) + axx) (mod 3)

But this congruence follows immediately from the following case of Fermat’s
theorem:

t3 = t(mod 3).
Likewise ¢ is invariant with reference to (b). Hence g is a formal modular
covariant of f under T3.

1.2 Terminology and Definitions. Transforma-
tions

We proceed to formulate some definitions upon which immediate developments
depend.

1.2.1 An invariant.

Suppose that a function of n variables, f, is subjected to a definite set of trans-
formations upon those variables. Let there be associated with f some definite
quantity ¢ such that when the corresponding quantity ¢’ is constructed for the
transformed function f’ the equality
¢’ =M¢

holds. Suppose that M depends only upon the transformations, that is, is free
from any relationship with f. Then ¢ is called an invariant of f under the
transformations of the set.

The most extensive subdivision of the theory of invariants in its present
state of development is the theory of invariants of algebraical polynomials under
linear transformations. Other important fields are differential invariants and
number-theoretic invariant theories. In this book we treat, for the most part,
the algebraical invariants.

1.2.2 Quantics or forms.

A homogeneous polynomial in n variables x1,xo,...,x, of order m in those
variables is called a quantic, or form, of order m. Illustrations are

3 2 2 3
f(z1,22) = aoxy + 3a1x722 + 3agz175 + aswsy,

2 2 2
f(x1, 2, 23) = ag002] + 2a11021T2 + a020%5 + 201012123 + 2a011T223 + Q00223

13



With reference to the number of variables in a quantic it is called binary, ternary;
and if there are n variables, n-ary. Thus f(x1,z2) is a binary cubic form;
f(z1,x2,23) a ternary quadratic form. In algebraic invariant theories of binary
forms it is usually most convenient to introduce with each coefficient a; the
binomial multiplier (T) as in f(x1,x2). When these multipliers are present, a
common notation for a binary form of order m is (Cayley)

flz1,22) = (@0, a1, ,am § z1,22)" = apx" + mawi”’lxz + e

If the coefficients are written without the binomial numbers, we abbreviate

m m m—1
flz1,22) = (ag, a1, ,am § 1,22)™ = g2 + a1z w2 + - - .
The most common notation for a ternary form of order m is the generalized
form of f(x1,x2,x3) above. This is

m

flwy,az,m3) = )

p,q,r=0

m!

p..4q,.7
a T1ToT
gy pqr1+2+3

where p, g, take all positive integral values for which p 4+ ¢ +r = m. It will
be observed that the multipliers associated with the coefficients are in this case
multinomial numbers. Unless the contrary is stated, we shall in all cases con-
sider the coefficients a of a form to be arbitrary variables. As to coordinate
representations we may assume (x1,x2,3), in a ternary form for instance, to
be homogenous cooérdinates of a point in a plane, and its coefficients a,q, to
be homogenous coordinates of planes in M-space, where M + 1 is the number
of the a’s. Thus the ternary form is represented by a point in M dimensional
space and by a curve in a plane.

1.2.3 Linear Transformations.

The transformations to which the variables in an n-ary form will ordinarily be
subjected are the following linear transformations called collineations:

xr1 = Alx/1+u156/2++0'1$/n
T = )\2.%‘/1 + MQJ?IQ + ...+ O'QI; (23)

/ / /
Tp = ApZ7 + fn®y + ...+ opa,.

In algebraical theories the only restriction to which these transformations will
be subjected is that the inverse transformation shall exist. That is, that it be
possible to solve for the primed variables in terms of the un-primed variables
(cf. (10)). We have seen in Section 1, V (11), and VIII (22) that the verification
of a covariant and indeed the very existence of a covariant depends upon the
existence of this inverse transformation.

14



Theorem. A necessary and sufficient condition in order that the inverse of
(23) may exist is that the determinant or modulus of the transformation,

>\17 MH1, Vi, ... 01

A27 M2, V2, ... 02
M=Mw...c)=]| . . ,

Any Hny, Vny, ... Op

shall be different from zero.

In proof of this theorem we observe that the minor of any element, as of u;,

of M equals g—y. Hence, solving for a variable as x}, we obtain

x/—M—l(xW+xW+ +x W)
2 18,LL1 26U2 na/in ’

and this is a defined result in all instances except when M = 0, when it is
undefined. Hence we must have M # 0.
1.2.4 A theorem on the transformed polynomial.

Let f be a polynomial in x1, x5 of order m,

m
-1 —2 2
flz1,22) = apx" + marx"™ "zo + <2>a2x71" x5+ ...+ amry'.

Let f be transformed into f’ by T (cf. 31)

m

m— rm—r_r

f/ - a/OmI]nL + mll/] .’I;lm 1.’[7/2 + o + ( )(1/Tm]m l‘g’ + M + (]//,‘,nxg,n.
r

We now prove a theorem which gives a short method of constructing the
coefficients a. in terms of the coefficients aq, ..., Gn,.

Theorem. The coefficients a.. of the transformed form f' are given by the
formulas

y_(m=nt( 0 0N B
Gr = <M13A1+u28/\2> fO,A2) (r=0,...,m). (231)

In proof of this theorem we note that one form of f"is f(A12] +p1ah, Aoz +
paxh). But since f/ is homogeneous this may be written

fr=a"f( 4 may /2, Ao + paah /).

We now expand the right-hand member of this equality by Taylor’s theorem,
regarding z, /) as a parameter,

15



/77L 12 a
[ (A1, A2) + 3(”8)\) f(A1,A2)
9 2
+21v(x) ( m) Fa,da) +

2
1 (ah\" o\"

() (k) o],
ON_ (0,0

Fox) = \Max; Mo,

1/ 9\
f’=f(/\1,A2)x’1m+---+N(u(,)/\> FOL ATl 4 -

+ % <Ma) (A1, A2)zy

where

O
Comparison of this result with the above form of f’ involving the coefficients a!.
gives (231).
An illustration of this result may be obtained from (5). Here m = 2, and

ap = apA] + 2a1 M1 A2 + aa)3 = f(A1, X2) = fo,

1 0
ay = aphipi + ar(Mpi2 + Aopir) + agAope = ( 8)\> f(A1, A2), (24)

&)
S
I

1/ 9
aopt? + 2a1v1 i + aspy = ( 8)\> J(A1, A2).

1.2.5 A group of transformations.

If we combine two transformations, as T" and

! 1 1

T xy = &1@y +mak,
. ! 1 1
Ty = §2x + N2y,

there results

w1 = (M + i) wy + (Am + pim2)zs,

T - 1 7
= (A2&1 + p282)x + (Aamn + pan2)asy,

This is again a linear transformation and is called the product of T and T".
If now we consider Aj, A9, i1, p2 in T to be independent continuous variables
assuming, say, all real values, then the number of linear transformations is
infinite, i.e. they form an infinite set, but such that the product of any two
transformations of the set is a third transformation of the set. Such a set of
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transformations is said to form a group. The complete abstract definition of a
group is the following:

Given any set of distinct operations T, 7", 7", - -, finite or infinite in num-
ber and such that:

() The result of performing successively any two operations of the set is
another definite operation of the set which depends only upon the component
operations and the sequence in which they are carried out:

(8) The inverse of every operation T exists in the set; that is, another op-
eration T~! such that 77! is the identity or an operation which produces no
effect.

This set of operations then forms a group.

The set described above therefore forms an infinite group. If the transforma-
tions of this set have only integral coefficients consisting of the positive residues
of a prime number p, it will consist of only a finite number of operations and so
will form a finite group.

1.2.6 The induced group.

The equalities (24) constitute a set of linear transformations on the variables
ag, a1, as. Likewise in the case of formulas (231). These transformations are said
to be induced by the transformations T. If T carries f into f’ and T" carries
f/into f”, then

m! o€
(m—r)! 0\ == 1 2\° 9
=— (1= — | p= A1, A)ETTTE5. (24
m! 7785 ;S! :U’a)\ f( 1, 2) 1 52 ( 1)
(r=0,1,---,m).
This is a set of linear transformations connecting the a!’ directly with ag, - - - , ap,.

The transformations are induced by applying T, T" in succession to f. Now the
induced transformations (231) form a group; for the transformations induced by
applying T and T” in succession is identical with the transformation induced by
the product T7”. This is capable of formal proof. For by (281) the result of
transforming f by TT" is

— )
a; = WATJC(M& + 1162, Mo&1 + p2ba),

where

) 0
A=) e e T Ialr + &)
(Aa + ““72)8(A1§1 + p1é2) Qam ¥ MWQ)a()‘Zfl + p262)
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But

(A + Mlﬂz)m

_ 9 O(A1&1 + péa)

NG+ ) 061

+m, 0 (A& + u1és)
(A1 + pée) 3}

_—
772(952‘

>~ (nag) + (r2¢)

and by the method of (IV) combined with this value of A

m—r)! O\ =1 a\°
a) = (mi') <778§> Z 3 (Ma)\> F(A1, A)&" 73

0

2
= 7718{1

Hence

But this is identical with (24;). Hence the induced transformations form a
group, as stated. This group will be called the induced group.

Definition.

A quantic or form, as for instance a binary cubic f, is a function of two distinct
sets of variables, e.g. the variables x1, x2, and the coefficients ag,...,a3. It is
thus quaternary in the coefficients and binary in the variables x1, z2. We call it
a quaternary-binary function. In general, if a function F' is homogeneous and of
degree 7 in one set of variables and of order w in a second set, and if the first set
contains m variables and the second set n, then F' is said to be an m-ary-n-ary

function of degree-order (i,w). If the first set of variables is aq, . .., a,, and the
second and the second z1,...,x,, we frequently employ the notation
F=(ag,...,am)(x1,...,2,)".

1.2.7 Cogrediency.

In many invariant theory problems two sets of variables are brought under con-
sideration simultaneously. If these sets (x1, 29, , &), (Y1,¥2," - ,Yn) are sub-
ject to the same scheme of transformations, as (23), they are said to be cogre-
dient sets of variables.
As an illustration of cogredient sets we first take the modular binary trans-
formations,
Ty w1 = M) + pixh, xo = Aot + poxh,

where the coefficients A, u are integers reduced modulo p as in Section 1, VIII.
We can prove that with reference to T}, the quantities 2%, 2}, are cogredient to
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r1,x2. For all binomial numbers (2), where p is a prime, are divisible by p

except (g) and (g). Hence, raising the equations of T}, to the pth power, we
have
2 = NP+ b el b = Noa'P + pbalf (mod p).
But by Fermat’s theorem,
X0= A i = i (mod p) (i = 1,2).
Therefore
o} = Mzl + mad, af = Naaf + pazy,

and the cogrediency of zf, 28 with x1, x5 under T}, is proved.

1.2.8 Theorem on the roots of a polynomial.

Theorem. The roots (7“51), rél)), (1"52), 7“52)), I ((rﬁ’"),ré’”)) of a binary form
f=aoz" + malx’f—lxg + ...+ apzy’,

are cogredient to the variables.

To prove this we write

f= 0Pz —rPa) Do —rPag) - (Ve — ™M),

and transform f by T'. There results
=11 {(Téi)M — ) + (8 — i pa)arh |
i=1

Therefore A A _ ‘ A A
(2 (2 1 /(2 (2 (2
7“'2( ) — ré ))\1 — r% )/\2; 7"1( ) — —(ré ),ul — rg ),ug).

Solving these we have

()\LL)Tgi) = Alrll(i) + er;(i),
()\u)réi) = )\grll(i) + ugr;(i).

Thus the r’s undergo the same transformation as the a’s (save for a common
multiplier (Au)), and hence are cogredient to x1, zo as stated.

1.2.9 Fundamental postulate.

We may state as a fundamental postulate of the invariant theory of quantics
subject to linear transformations the following: Any covariant of a quantic
or system of quantics, i.e. any invariant formation containing the variables
Z1,%2,... will keep its invariant property unaffected when the set of elements
Z1,%2,... is replaced by any cogredient set.
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This postulate asserts, in effect, that the notation for the variables may be
changed in an invariant formation provided the elements introduced in place of
the old variables are subject to the same transformation as the old variables.

Since invariants may often be regarded as special cases of covariants, it is
desirable to have a term which includes both types of invariant formations. We
shall employ the word concomitant in this connection.

BINARY CONCOMITANTS

Since many chapters of this book treat mainly the concomitants of binary forms,
we now introduce several definitions which appertain in the first instance to the
binary case.

1.2.10 Empirical definition.
Let

_ 1 _
f=aopx! +maz oy + Qm(m — Daga™ 222 + - + apal,

be a binary form of order m. Suppose f is transformed by T into

f' = ape™ + may a4 - 4 al, ahm

We construct a polynomial ¢ in the variables and coefficients of f. If this
function ¢ is such that it needs at most to be multiplied by a power of the
determinant or modulus of the transformation (Au), to be made equal to the
same function of the variables and coefficients of f’, then ¢ is a concomitant
of f under T. If the order of ¢ in the variables x1, =2 is zero, ¢ is an invari-
ant. Otherwise it is a covariant. An example is the discriminant of the binary
quadratic, in Paragraph III of Section 1.

If ¢ is a similar invariant formation of the coefficients of two or more binary
forms and of the variables x1, 2, it is called a simultaneous concomitant. Illus-
trations are h in Paragraph IV of Section 1, and the simultaneous covariant C'
in Paragraph V of Section 1.

We may express the fact of the invariancy of ¢ in all these cases by an
equation

k
¢ = ()" 9,
in which ¢’ is understood to mean the same function of the coefficients ag, aly,
.., and of 2, 24, that ¢ is of ag, a1, ..., and 21, 9. Or we may write more
explicitly
k
dag, ay,...;2h,xh) = (M) @(ao, ar, - . . ; 21, T2). (25)

We need only to replace T by (23) and (Ap) by M = (Ap---0) in the above
to obtain an empirical definition of a concomitant of an n-ary form f under
(23). The corresponding equation showing the concomitant relation is

p(a'; 2l ahy, ... 2l) = MPp(a; 21,29, ..., 2). (26)
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An equation such as (25) will be called the invariant relation corresponding to
the invariant ¢.

1.2.11 Analytical definition.

1 We shall give a proof in Chapter II that no essential particularization of the
above definition of an invariant ¢ of a binary form f is imposed by assuming
that ¢ is homogeneous both in the a’s and in the z’s. Assuming this, we define
a concomitant ¢ of f as follows:

(1) Let ¢ be a function of the coefficients and variables of f, and ¢’ the same
function of the coefficients and variables of f’. Assume that it is a function such
that

lolod o¢’ 0¢’ d¢9"
'ula)q +u28/\2 B +)\28,u2 =

(2) Assume that ¢’ is homogeneous in the sets A1, Ag; u1, pe and of order k
in each.

Then ¢ is called a concomitant of f.

We proceed to prove that this definition is equivalent to the empirical defi-
nition above.

Since ¢’ is homogeneous in the way stated, we have by Euler’s theorem and
(1) above

=0, At 0. (27)

9¢' o¢' / 9\
1 8)\1 + A2 3)\2 ¢ ) Ma)\ (b ) ( )
where k is the order of ¢’ in A1, A2. Solving these,
o9’ _, 0 _
= kpad’ M) ™Y, S = —kme' ()
8)\1 M2¢ ( /‘l’) ? 8)\2 Ml(b ( /‘l‘)
Hence o' o'
d¢/ = ——d\ dho = (M) k¢ (uadAi — prdAs).
¢ o 1+6)\2 2 = (M) k' (p2dA1 — prdA2)
Separating the variables and integrating we have
d¢l d(/\M) / k
— =k—— =C(A\p)",
o (An) $ =00

where C' is the constant of integration. To determine C, let T' be particularized
to

T =1}, o = .
Then a; = a;(i = 0,1,2,---,m), and ¢ = ¢. Also (Au) = 1. Hence by
substitution

¢' = ()’

IThe idea of an analytical definition of invariants is due to Cayley. Introductory Memoir
upon Quantics. Works, Vol. II.

21



and this is the same as (25). If we proceed from

0 / 0 / /
(a) ¢ =0 () # =19’

we arrive at the same result. Hence the two definitions are equivalent.

1.2.12 Annihilators.

We shall now need to refer back to Paragraph IV (23;) and Section 1 (10) and
observe that

0 0 0
(15 ) ot = = s, gy ) ot =0, gy ) oh ==t (20

Hence the operator (“a%) applied to ¢’, regarded as a function of A1, Ao, p1, o,
has precisely the same effect as some other linear differential operator involving
only af(i =0,--- ,m) and =}, z5, which would have the effect (29) when applied
to ¢’ regarded as a function of af, 2, z} alone. Such an operator exists. In fact
we can see by empirical considerations that

0 0 0
+ (m — 1)a} +-ta _Illaxé

O — 2 a
1 / 7 m /
Oay, Oa) da,, 4

— !/
= mal

(291)
o) !

is such an operator. We can also derive this operator by an easy analytical
procedure. For,

DN\ ., 09 [ day\ 99 [ 0d, 9¢' ( a,\ 08 [ 0xh\
(”8A>¢_aag (”aA Toa \Pox )T aa \Foan ) Taw \an ) =0

or, by (29)

0

In the same manner we can derive from ()\a%)qﬁ’ =0,

0 0 0 0 0
<Q’ x;ax,1> ¢ = <a68a’1 +2a'18—@,2 +e +ma;n_1@ — xé@xﬁ) ¢ = 0.
(297)
The operators (291), (292) are called annihilators (Sylvester). Since ¢ is the
same function of a;,x1x9, that ¢’ is of a}, 2} x}, we have, by dropping primes,
the result:

Theorem. A set of necessary and sufficient conditions that a homogeneous
function, ¢, of the coefficients and variables of a binary form f should be a

concomitant s
0 0
<O$1ax2>¢07 (Q$28961>¢
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In the case of invariants these conditions reduce to O¢ = 0, Q¢ = 0. These
operators are here written again, for reference, and in the un-primed variables:

0
1 — 4+ ...
O = may . —I—(m )ag ) + + am

Q=a i+2a i+ + ma 9
~ 9a, Y 9ay "1 9a,,

aam,fl ’

A simple illustration is obtainable in connection with the invariant
Dy = apag — a? (Section 1, TII).

Here m = 2:

Q= Cl()i —|—2a1i, 0= 261,1i + agi.
Oaq Oas a

QD1 = —2apa; + 2apa1 =0, ODy = 2a1a5 — 2a1as = 0.

It will be noted that this method furnishes a convenient means of checking the
work of computing any invariant.

1.3 Special Invariant Formations

We now prove the invariancy of certain types of functions of frequent occurrence
in the algebraic theory of quantics.

1.3.1 Jacobians.

Let f1, fo, -+, fn be n homogeneous forms in n variables x1,x2,--- ,z,. The
determinant,
flxla flxza Tty flxn
J = f2z1a fQZQa ) f29cn (30)
fnmy fnmw R fnxn
Af1

in which fi,, = For» ete., is the functional determinant, or Jacobian of the n
forms. We prove that J is invariant when the forms f; are transformed by (23),
i.e. by

= Nx) + piwy + -+ o (1 =1,2,--- ). (31)

To do this we construct the Jacobian J’ of the transformed quantic f]’ We have
from (31),

o _ofion Ofjows O ow,
Oxly 0wy Ozl = Oxg Ol Oz, Ozl
But by virtue of the transformations (31) we have in all cases, identically,
fi=fG=12n). (32)
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Hence of!
/ of; of; of;
J . 29I ZJI 4. J
0ry Mo, TH2gp, T T g,
and we obtain similar formulas for the derivatives of fj’- with respect to the other
variables. Therefore

)\lflxl + >\2f112 +--- 4+ )\nflzn7 ,Uflflxl +N2f112 + - +,U/nf1:12na
J =

)\lfnzl + >\2fn12 +--- 4+ /\nfnxnv /J/lfnzl + M2fnx2 + -+ ,unfnwna

(33)

(1.1)
But this form of J’ corresponds exactly with the formula for the product of
two nth order determinants, one of which is J and the other the modulus M.

Hence
J=p--0)d,

and J is a concomitant. It will be observed that the covariant C in Paragraph
V of Section 1 is the Jacobian of f and ¢.

1.3.2 Hessians.

If f is an n-ary form, the determinant

f.’tlmlv ffc1fc27 A ffmrcn
fiECE? fII? ) fII

H _ 2' 1 2. 2 . 2 n (34)
fafnxlv fxn,2?27 R fﬁ?nﬁfn

is called the Hessian of f. That H possesses the invariant property we may
prove as follows: Multiply H by M = (Auv---0), and make use of (33). This
gives

a9 Of a9 Of o Of

Al J751 .. 01 oz’ Oz’ oxly x0T oz’ Oz

\ - oo o of 0" o]

MH = -2 M2 ... 2 H— Oz’ Oz oxl, .612 [ 81%.8m2
A ... O a_ of 9 9f 9 9f

n fn n oz 0z, Ozl dxzy,’ ~°°7 Ox! Odxn

Replacing f by f’ as in (32) and writing
o of 0 of

oxh 0wy 01 oz’ ete.,
we have, after multiplying again by M,
Tarr Togarr 0 Tam
f/ f/ o f/
M2H _ x’lx’Q’ ;cfz;c'l’ ’ ;cil:cg ’
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that is to say,
H' = (Muv---0)*H,

and H is a concomitant of f.

It is customary, and avoids extraneous numerical factors, to define the Hes-
sian as the above determinant divided by £m™ x (m — 1)". Thus the Hessian
covariant of the binary cubic form

3 2 2 3
f = aox] + 3a12722 + 3asx125 + azxs,

apT1 + a1x + 2,a1x1 + asxs
121 + G222, a2x1 + a3T2

A:

)

=2(apas — a2)x? + 2(apas — araz)r122 + 2(araz — a3)ra. (35)

1.3.3 Binary resultants.

Let f, ¢ be two binary forms of respective orders, m, n;

f = aox’ln + ma1x§n71$2 + -+ amx;n = H(Tgl)xl - Tg )$2)
=1

n

¢ = bz +nbix trg + - byal = H(sgj)xl - ng)mg).

j=1
It will be well known to students of the higher algebra that the following sym-
metric function of the roots (rg ), ré )), (sg ), séj)), R(f, ¢) is called the resultant
of f and ¢. Its vanishing is a necessary and sufficient condition in order that f
and ¢ should have a common root.

o=

To prove that R is a simultaneous invariant of f and ¢ it will be sufficient to
recall that the roots (r1,72), (s1,s2) are cogredient to x, x5. Hence when f, ¢
are each transformed by 7', R undergoes the transformation

—rgsi)). (36)

u::]g

()\N) = >\1T1 + ,U17”2 (AM)TQ = )‘27”1 g + pary 3 )

(/\u) =\ s ) + M1S ()\,u) 0) = /\28 )+ H2Sy 9

in which, owing to homogeneity the factors (Au) on the left may be disregarded.
But under these substitutions,

RONO N ONO RS TR ONC BN ON/ON

2Throughout this book the notation for particular algebraical concomitants is that of Cleb-
sch.
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Hence
R(f',¢") = (A\)™"R(f,9),
which proves the invariancy of the resultant.

The most familiar and elegant method of expressing the resultant of two
forms f, ¢ in terms of the coefficients of the forms is by Sylvester’s dialytic
method of elimination. We multiply f by the n quantities 27, x?72x27 ey ah Tt
in succession, and obtain

aox’f””*l + malx;’”"*%cg + ...+ amx?flxgn,
aoxi'””*?mg + ...+ mam,lx?fzxg”l + am:v?flxg”, (37)
aox?’xg_l + ..+ mam_lscl:c;"+"_2 + am:ch'"_l.
Likewise if we multiply ¢ by the succession "', 27" %2, ...,z !, we have

the array

-1 -2 -1
box " b by 2T g + L+ b

boxTay ™t + . 4 nb, 1z 2y T2 4 byt (38)

The eliminant of these two arrays is the resultant of f and ¢, viz.

ag ma; ... ... Am 0 0... O
n Tows 0 ag mai ... Maym-1 am 0... 0
0 0 0 a
R(f,¢) = by b "
m rows bo nby
0 0 0 ... ... ... .. ... by

A particular case of a resultant is shown in the next paragraph. The degree of
R(f,¢) in the coefficients of the two forms is evidently m + n.

1.3.4 Discriminant of a binary form.

The discriminant D of a binary form f is that function of its coefficients which
when equated to zero furnishes a necessary and sufficient condition in order that
f =0 may have a double root. Let

-1
[ = f(z1,22) = aox" + marz" 22 + - - + apmay’,

and let fy, (z1,22) = g—gfl, fao(21,22) = 8‘%. Then, as is well known, a common
root of f =0, % = ( is a double root of f = 0 and conversely. Also

1 af \ _ of .
Ty mf_mlﬁiajl _67;52’
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hence a double root of f = 0 is a common root of f = 0, gfl =0, gme =0,

and conversely; or D is equal either to the eliminant of f and 83:1’ or to that
of f and 887]; Let the roots of fy, (x1,22) = 0 be (sg),s2 Yi=1,---,m—1),
those of fr(zl,xg) =0, (t(li),tgi))(i =1,---,m — 1), and those of f = 0 be
(ri),réj))(j—l 2,---,m). Then

aoD = f(s (1))f($(12)7 (2)) . f(ng_1)7 ng_l)%
amD = f(tgl)7 t(l))f(tgz), t;Q)) . f(tgm_l), tém_l)).

Now Of(z1,23) = xlf%fz’ Qf (z1,22) = xgaa—wfl, where 0 and Q are the annihila-
tors of Section 2, XII. Hence

0D ="tV fu, () ) (D 43 - p™ Y Y =0,
QD = s fo (58, 880 £, 5D - s D) = 0,

Thus the discriminant satisfies the two differential equations OD = O, QD =0
and is an invariant. Its degree is 2(m — 1).
An example of a dlscriminant is the following for the binary cubic f, taken
as the resultant of -2 a:p , g—f:
1 T2
ag 2a; azx 0
1 . 0 aon 2@1 as
27 20 4y 0 (39)
0 aq 2(12 as

= (apaz — a1a2)2 — 4(agag — a%)(alag — a%).

1.3.5 Universal covariants.

Corresponding to a given group of linear transformations there is a class of
invariant formations which involve the variables only. These are called universal
covariants of the group. If the group is the infinite group generated by the
transformations 7" in the binary case, a universal covariant is

d= (my) = T1Y2 — X2Y1,

where (y) is cogredient to (x). This follows from

Ay + b, dexh + ,u2x2
= ’ A 40
AMyr+ Yy, A2yt + pays = Q). (40)

If the group is the finite group modulo p, given by the transformations 7},, then
since zf, 2} are cogredient to 1, z2, we have immediately, from the above result
for d, the fact that

L =alzy — x5 (41)
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is a universal covariant of this modular group.?

Another group of linear transformations, which is of consequence in geome-
try, is given by the well-known transformations of codrdinate axes from a pair
inclined at an angle w to a pair inclined at an angle W’ = 8 — «, viz.

sin(w — ) o4 sin(w —8) ,

Tr1 = 3 1 . Tg,
sinw sinw
sina sin
To = ——a) + —51«’2 (42)
sinw sinw
Under this group the quadratic,
x3 + 221 w9c08Ww + T (43)

is a universal covariant.*

3Dickson, Transactions Amer. Math. Society, vol. 12 (1911)
4Study, Leipz. Ber. vol. 40 (1897).
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Chapter 2

PROPERTIES OF
INVARIANTS

2.1 Homogeneity of a Binary Concomitant

2.1.1 Homogeneity.

A binary form of order m

f=apxT +marx] toy + -+ apmaly,
is an (m+ 1)-ary-binary function, of degree-order (1,m). A concomitant of f is
an (m + 1)-ary-binary function of degree-order (¢,w). Thus the Hessian of the
binary cubic (Chap. I, §3, II),

A = 2(agay — a?)x? + 2(agas — ayas) w12 + 2(a1a3 — al)z, (44)

is a quaternary-binary function of degree-order (2, 2). Likewise f + A is
quaternary-binary of degree-order (2, 3), but non-homogeneous.

An invariant function of degree-order (i, 0) is an invariant of f. If the degree-
order is (0,w), the function is a universal covariant (Chap. I, §3, V). Thus
azas — a? of degree-order (2, 0) is an invariant of the binary quadratic under 7T,
whereas z]xs — z125 of degree-order (0,p + 1) is a universal modular covariant
of T},.

Theorem. If C = (ag,a1, - ,am) (v1,72)” is a concomitant of f =
(ag, -+ ,am)(x1,22)™, its theory as an invariant function loses no general-
ity if we assume that it is homogeneous both as regards the variables x1,xo and
the variables ag,- - , Q-

Assume for instance that it is non-homogeneous as to x1,z2. Then it must
equal a sum of functions which are separately homogeneous in 1, x2. Suppose

C=C+Cot - +0Ci,
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where C; = (ag,a1,- -+ ,am)i' (z1,22)w; (j =1,2,---,5) ¢/ < i. Suppose now
that we wish to verify the covariancy of C, directly. We will have

¢ = (a67 allv T 7(]/;1)1’(1,/171,/2)0.; = ()‘:u)kcv (45)
in which relation we have an identity if a} is expressed as the appropriate linear

expression in ag, - - - , a;, and the 2 as the linear expression in z1, 2, of Chapter
I, Section 1 (10). But we can have

AL e
j=1 j=1

identically in x1, x2 only provided
OJI = ()‘/‘)ij (G=1--,s).

Hence Cj is itself a concomitant, and since it is homogeneous as to z1, %2, no
generality will be lost by assuming all invariant functions C' homogeneous in
T1,T2.
Next assume C' to be homogeneous in x1,x3 but not in the variables
ag, a1, ,Qm. Then
C=T1+T2+ -+ T,

where I'; is homogeneous both in the a’s and in the x’s. Then the above process
of verification leads to the fact that

I = (AT,

and hence C' may be assumed homogeneous both as to the a’s and the z’s; which
was to be proved. The proof applies equally well to the cases of invariants,
covariants, and universal covariants.

2.2 Index, Order, Degree, Weight

In a covariant relation such as (45) above, k, the power of the modulus in the
relation, shall be called the index of the concomitant. The numbers i,w are
respectively the degree and the order of C.

2.2.1 Definition.

Let 7 = afjajal - - - a¥ a x5 " be any monomial expression in the coefficients and

variables of a binary m-ic f. The degree of 7 is of course i = p+qg+7r+---+v.
The number
w=q+2r+3s+---+mv+pu (46)

is called the weight of 7. It equals the sum of all of the subscripts of the letters
forming factors of 7 excluding the factors wy. Thus ag is of weight 3; agalay of
weight 6; ajasx?z3 of weight 9. Any polynomial whose terms are of the type
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7 and all of the same weight is said to be an isobaric polynomial. We can, by
a method now to be described, prove a series of facts concerning the numbers
w, i, k,w.

Consider the form f and a corresponding concomitant relation

¢ = (a67 a/17 T ’a;n)i(‘r/la mé)w = ()‘/‘)k(a()’ a, - ’am)i(xla $2)w' (47)
This relation holds true when f is transformed by any linear transformation

! /

LT = Ax + sy,
. ! /
To = Ao + pazh.

It will, therefore, certainly hold true when f is transformed by any particular
case of T. It is by means of such particular transformations that a number of
facts will now be proved.

2.2.2 Theorem on the index.

Theorem. The index k, order w, and degree i of C' satisfy the relation

k= é(zm —w). (48)

And this relation is true of invariants, i.e. (48) holds true when w = 0.
To prove this we transform
f=aoxl +marx tag + -+ amal,
by the following special case of T":
1 = A\x], T = \7h
The modulus is now A2, and aj = A"a;j(j=0,---,m). Hence from (47),

()\mG/O? )\ma17 ) ATnaﬂn)i()\_lml) A_le)w = )\2k(a0) ai, -, am)i(xla 1‘2)“}'
(49)
But the concomitant C' is homogeneous. Hence, since the degree-order is (7, w),

A,”n_w(a/Oa e 7a'm)i(x1a x?)w = )\2k(a0) e aam)i(x:l) m2)w
Hence
2K =im — w.
2.2.3 Theorem on weight.

Theorem. Every concomitant C' of f is isobaric and the weight is given by

1 .
w = i(zm—I—w), (50)

where (i,w) is the degree-order of C, and m the order of f. The relation is true
for invariants, i.e. if w = 0.
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In proof we transform f by the special transformation
T = T, 19 = \Th. (51)
Then the modulus is A, and aj = Na;(j=0,2,---,m). Let

I . A
T = QgQq10G9 * T Ty

be any term of C' and 7/ the corresponding term of C”, the transformed of C' by
(51). Then by (47),

7= NP2 w g bad gl kT = APy

Thus )
w—w=k= i(imfw),
or
1.
w = §(zm + w).
COROLLARY 1. The weight of an invariant equals its index,
1
w=k= iim.

COROLLARY 2. The degree-order (i,w) of a concomitant C' cannot consist
of an even number and an odd number except when m is even. Then ¢ may be
odd and w even. But if m is even w cannot be odd.

These corollaries follow directly from (48), (50).

As an illustration, if C' is the Hessian of a cubic, (44), we have

t=2,w=2,m=3,

1
w=5(2:3+2)=4,

1
S 2
These facts are otherwise evident (cf. (44), and Chap. I, Section 3, II).
COROLLARY 3. The index k of any concomitant of f is a positive integer.
For we have

k==(2-3-2)=2.

w—w=k,

and evidently the integer w is positive and w < w.

2.3 Simultaneous Concomitants

We have verified the invariancy of two simultaneous concomitants. These are
the bilinear invariants of two quadratics (Chap. I, Section 1, IV),

Y = apr?y + 2012172 + aga’s,
¢ = box?1 + 2b171 29 + box?s,
viz. h = agby — 2a1b1 + asbg,
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and the Jacobian C of 9 and ¢ (cf. (8)). For another illustration we may
introduce the Jacobian of ¢ and the Hessian, A, of a binary cubic f. This is
(cf. (44))

J¢ A = [bo(aoag — a1a2) - 2b1 (QOQQ - (],21)]1'21

+ Q[bo(a1a3 - a22) — bg(a0a2 — &21)]561.’132

+ [2bi(aras — a*2) — ba(agas — araz)]z?s,
and it may be verified as a concomitant of ¢ and
f = 001'31 =+ ...

The degree-order of J is (3, 2). This might be written (1 + 2, 2), where by the
sum 1 + 2 we indicate that J is of partial degree 1 in the coefficients of the first
form ¢ and of partial degree 2 in the coefficients of the second form f.

2.3.1 Theorem on index and weight.

Theorem. Let f,¢,¢,--- be a set of binary forms of respective orders
mi,ma,ms3, . Let C be a simultaneous concomitant of these forms of
degree-order

(i1—|—i2+i3+---,w)

Then the index and the weight of C are connected with the numbers m,i,w by
the relations

k:%(Zilml—w>,w:%<2i1m1+w), (52)

and these relations hold true for invariants (i.e. when w =0).

The method of proof is similar to that employed in the proofs of the theorems
in Section 2. We shall prove in detail the second formula only. Let

f:aox;n1_|_...’ ¢:b0xT2+~-- ; wZCOm?w_,'_._. e
Then a term of C' will be of the form
T anag bRy

Let the forms be transformed by z; = xf, 22 = Arh. Then o = NMay, b}

Nbj,---(j =0,---,m;), and if 7/ is the term corresponding to 7 in the trans-
formed of C by this particular transformation, we have

= )\T1+251+---+7’2+282+---+M*w7 _ )\kT.

Hence

w—w=k=%(2i1m1—w)7
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which proves the theorem.
We have for the three simultaneous concomitants mentioned above; from
formulas (52)
h C J
k=2 k=1 k=3
w=2 w=3 w=5

2.4 Symmetry. Fundamental Existence Theo-
rem

We have shown that the binary cubic form has an invariant, its discriminant, of
degree 4, and weight 6. This is (cf. (39))

1
5t = —(a0as — a102)” + 4(agaz — af) (@103 — a3).

2.4.1 Symmetry.

We may note concerning it that it is unaltered by the substitution (aga;)(ajaz).
This fact is a case of a general property of concomitants of a binary form of order
m. Let f = apx"+---; and let C be a concomitant, the invariant relation being

C' = (ah,d),...,a)) (zh, 25) = \w)¥(ag, ..., am) (x1,22)%.
Let the transformation T of f be particularized to
T =Th, Ty = ).
The modulus is —1. Then a} = a;,—;, and

C" = (A, A1, -+, 00) (2, 21)° = (=1)*(ag, ..., am) (z1,22)*. (53)

That is; any concomitant of even index is unchanged when the interchanges
(apam)(a1am—1) - - - (x122) are made, and if the index be odd, the concomitant
changes only in sign. On account of this property a concomitant of odd index is
called a skew concomitant. There exist no skew invariants for forms of the first
four orders 1, 2, 3, 4. Indeed the simplest skew invariant of the quintic is quite
complicated, it being of degree 18 and weight 45 ! (Hermite). The simplest
skew covariant of a lower form is the covariant T of a quartic of (125) (Chap.
IV, §1).

We shall now close this chapter by proving a theorem that shows that the
number of concomitants of a form is infinite. We state this fundamental exis-
tence theorem of the subject as follows:

Theorem. FEvery concomitant K of a covariant C' of a binary form f is a
concomitant of f.

1Faa di Bruno, Walter. Theorie der Biniren Formen, p. 320.
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That this theorem establishes the existence of an infinite number of con-
comitants of f is clear. In fact if f is a binary quartic, its Hessian covariant
H (Chap. I, §3) is also a quartic. The Hessian of H is again a quartic, and is
a concomitant of f by the present theorem. Thus, simply by taking successive
Hessians we can obtain an infinite number of covariants of f, all of the fourth
order. Similar considerations hold true for other forms.

In proof of the theorem we have

f:aox;'L_A'_...’
7 w w w—1
C=(ao, - ,am)" (r1,22)" = cox{ +wera? wo + -,
where ¢; is of degree i in ag, - , G-

Now let f be transformed by 7. Then we can show that this operation
induces a linear transformation of C, and precisely 7. In other words when f
is transformed, then C' is transformed by the same transformation. For when f
is transformed into f/, C' goes into

C' = \w)*(cony +weray g +---).

But when C is transformed directly by T, it goes into a form which equals C
itself by virtue of the equations of transformation. Hence the form C, induced by
transforming f, is identical with that obtained by transforming C by T directly,
save for the factor (Au)*. Thus by transformation of either f or C,

bl + w4 o = ()Feoat + w)erst o+ (54)
is an equality holding true by virtue of the equations of transformation. Now
an invariant relation for K is formed by forming an invariant function from
the coeflicients and variables of the left-hand side of (54) and placing it equal
to (Ap)¥ times the same function of the coefficients and the variables of the
right-hand side,

K' = (cp,...,c,) (), xh)°

= (WS (()Fco, ., () ) (a1, )"

But K’ is homogeneous and of degree-order (¢, €). Hence

K' = (cy,...,c ) (@), 25) = M) 5 (co, ..., co) (21, 22)¢ (55)
— ()\M)Lk—i-ch.
Now ¢ is the same function of the ay,...,al, that ¢; is of ao,...,am. When

the ¢’s and ¢’s in (55) are replaced by their values in terms of the a’s, we have

K' =lap,...,al )" (2}, 25) = M) [ag, . . ., am]™ (21, 22)° (56)
_ ()\,U,)LkJrHK.
where, of course, [ag, ..., am]"(z1,22)¢ considered as a function, is different

from (ag,...,am)"(z1,22)¢. But (56) is a covariant relation for a covariant of
f. This proves the theorem.
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The proof holds true mutatis mutandis for concomitants of an n-ary form
and for simultaneous concomitants.
The indezx of K is

1 1
p:Loi(imfw)Jri(wae)
1
= §(iLm —€),
and its weight,
1.
w = i(um +€).
Hllustration. If f is a binary cubic,
f= aox‘;’ + 3@1.’17%1’2 + 3a2x1x§ + agacg,
then its Hessian,
A = 2[(agaz — af)x] + (agaz — araz)z122 + (ara3 — a3)w3),

is a covariant of f. The Hessian 2R of A is the discriminant of A, and it is also
twice the discriminant of f,

2R = 4[—(agaz — aras)? + 4(apas — a?)(aras — a3)].

36



Chapter 3

THE PROCESSES OF
INVARIANT THEORY

3.1 Invariant Operators

We have proved in Chapter II that the system of invariants and covariants of
a form or set of forms is infinite. But up to the present we have demonstrated
no methods whereby the members of such a system may be found. The only
methods of this nature which we have established are those given in Section
3 of Chapter I on special invariant formations, and these are of very limited
application. We shall treat in this chapter the standard known processes for
finding the most important concomitants of a system of quantics.

3.1.1 Polars.

In Section 2 of Chapter I some use was made of the operations )\1%1 +

)\28%2, :“16%1 + /,Lgai)\?. Such operators may be extensively employed in the
construction of invariant formations. They are called polar operators.

Theorem. Let f = apx* +--- be an n-ary quantic in the variables x1,--- ,x,
and ¢ a concomitant of f, the corresponding invariant relation being

(b/ = (af)v T )l(‘r/lv T 7$;L)w
:()\,uo')k(ao’)l([ph axn)w:Mkd) (57)
Then if y1,y2,-++ ,Yn are cogredient to x1,xa, - ,Tn, the function

DNy (e DY,
yax o yl(‘?xl y28m2 y"axn

is a concomitant of f.
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It will be sufficient to prove that

0 0
(v ) & =2 (52 ) & (58)

the theorem will then follow directly by the definition of a covariant. On account
of cogrediency we have

/ / /
Tp = A& + Wiy + -+ 0T,

Yi = Aiyy + payy + o oy (i=1,-- ). (59)
Hence
0 _00n, 00n, | 0om
oxy 0wy Oz Ozo O7) O, 0z’
0 0 0 0
N N R
81'12 B 8;101 H2 8x2 Hn 8xn’
0 0 n 0 T 0
— gy 2. O
ox! a1 0x1 72 0xo oz,
Therefore
! + ) 9 (/\ A AT ’)7
yl 8‘%/1 yn ax’/n 1y1 ,U/1y2 Ulyn axn

0
o Oyt e+ Oyl 5

T Y
- ylaxl ynazn

Hence (58) follows immediately when we operate upon (57) by

() :2)

The function (y%w is called the first polar covariant of ¢, or simply the first
polar of ¢. It is convenient, however, and avoids adventitious numerical factors,
to define as the polar of ¢ the expression (ya%)gﬁ times a numerical factor. We
give this more explicit definition in connection with polars of f itself without
loss of generality. Let f be of order m. Then

m-—r 0 0 \"
‘ <y18+"'+yn8$) fEfyra (61)

|m )

the right-hand side being merely an abbreviation of the left-hand side, is called
the rth y-polar of f. It is an absolute covariant of f by (60).
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For illustration, the first polars of

3 2 2 3
f = aox] + 3a1x722 + 3azx125 + asxs,

2 2 2
g = a200%] + 20110172 + Gp20Z3 + 201012173 + 200117273 + Ago273,
are, respectively,

fy= (aox% +2a1z129 + agxg)yl + (ale + 2a9x1x0 + agxg)yg,
gy = (a2001 + a110%2 + a10123)y1 + (11021 + @020T2 + G01123)Y2

+ (a10171 + ao1172 + Ap0273)Ys3-
Also,
fy2 = (oY} + 2a1y19y2 + a2y3)z1 + (a1yF + 2a2y1y2 + azys)va.
If g = 0 is the conic C of the adjoining figure, and (y) = (y1,y2,ys) is the
point P, then g, = 0 is the chord of contact AB, and is called the polar line of

P and the conic. If P is within the conic, g, = 0 joins the imaginary points of
contact of the tangents to C from P.

We now restrict the discussion in the remainder of this chapter to binary
forms.

We note that if the variables (y) be replaced by the variables (z) in any polar
of a form f the result is f itself, i.e. the original polarized form. This follows
by Euler’s theorem on homogeneous functions, since

(yiﬂ) fly=z = (xlaaxl + ch(?i?> f=mf. (62)

In connection with the theorem on the transformed form of Chapter I, Sec-
tion 2, we may observe that the coefficients of the transformed form are given
by the polar formulas

af) = f()\l, /\2) = fo.a/l = fou,aé = f0u27 ...,a;n = foum. (63)
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The rth y-polar of f is a doubly binary form in the sets (y1,y2), (z1,z2) of
degree-order (r,m — r). We may however polarize a number of times as to (y)
and then a number of times as to another cogredient set (z);

fylo = ;?Efg‘ S o) (yaax) (z(,ic) ¥ (64)

This result is a function of three cogredient sets (x), (y), (2).

Since the polar operator is a linear differential operator, it is evident that
the polar of a sum of a number of forms equals the sum of the polars of these
forms,

(ft oty = fyr + 0y +

3.1.2 The polar of a product.

We now develop a very important formula giving the polar of the product of
two binary forms in terms of polars of the two forms.

If F(x1,x2) is any binary form in x1,x2 of order M and (y) is cogredient to
(z), we have by Taylor’s theorem, k& being any parameter,

F(x1 + kyy, w2 + ky2)

_ 3 of O\'F [ O\ F
—F(wl,xz)+k<yax)F+k (yam> TR (yax> i

M M M
:F+(1>Fyk+(2)Fyzk‘2+-~-+(T)Fyrkr+~--. (65)

Let F' = f(z,x2)¢(x;, z2), the product of two binary forms of respective orders
m, n. Then the rth polar of this product will be the coefficient of £" in the
expansion of

fler +kyr, 2o + kya) X (a1 + kyr, z2 + kya),

divided by ("), by (65). But this expansion equals

[f+ (T)fyk+ (n;)fy2k2 Fot (T)fyk+] [¢>+ (?)%k
+ (Z)gbyzkz +... 4 (:)¢ykr+]

Hence by direct multiplication,

f¢]yr B (’“1+) K@ ( >f¢-” <ﬂf) < 1>fy¢y” ot (T) <’g>fy¢] ,
Or LS e w
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This is the required formula.

The sum of the coefficients in the polar of a product is unity. This follows
from the fact (cf. (62)) that if (y) goes into () in the polar of a product it
becomes the original polarized form.

An illustration of formula (66) is the following:

Let f = apx} + ..., ¢ = box? +.... Then

9,73 ) eyt () ()t () (o]

1 3 1
= gfy“b"' gfy%by + 5fy¢y3

3.1.3 Aronhold’s polars.
The coefficients of the transformed binary form are given by
a, = fur A1, 22) (r=0,...,m).

These are the linear transformations of the induced group (Chap. I, §2). Let ¢
be a second binary form of the same order as f,

¢ = b + mbix ray 4 ...
Let ¢ be transformed by T into ¢'. Then
by, = dur (M, A2).

Hence the set by, b1, - -, by, is cogredient to the set ag, a1, - -+, am, under the
induced group. It follows immediately by the theory of Paragraph I that

(b’a) =b 0 +-+ 0

Oa’ ° Oy, ™ 0al,
0 0 0
_b08ao+m+bm8am:<b8a>' (67)

That is, (ba%) is an invariant operation. It is called the Aronhold operator but
was first discovered by Boole in 1841. Operated upon any concomitant of f it
gives a simultaneous concomitant of f and ¢. If m = 2, let

2
I =apaz —aj.

Then
0 0 0 0
(baa) 1= (boam)+b1(%+b2%> I—a0b2—2a1b1 +a2b0.

This is h (Chap. I, §1). Also

262 2[—4(bb —b?)
aa - 002 1/
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the discriminant of ¢. In general, if ¢ is any concomitant of f,

U= (ap, - al,) (@, 7h) = (W) (a0, -y am) (21, 22),
then

(b’aaa,)rw’ — Ow)" (bi)rw — 0,1, i) (63)

are concomitants of f and ¢. When r = 4, the concomitant is
T = (b07 e 7bm)l(x17x2)w~

The other concomitants of the series, which we call a series of Aronhold’s polars
of 1, are said to be intermediate to 1) and x, and of the same type as . The
theory of types will be referred to in the sequel.
All concomitants of a series of Aronhold’s polars have the same index k.
Thus the following series has the index k = 2, as may be verified by applying
(52) of Section 3, Chapter II to each form (f = agx$ + -+ ;¢ = bz + --+):

H = (apaz — a%)x% + (agaz — araz)r1T2 + (@103 — a%)x%,

0
<b6a) H = (aobg — 2a1b1 + agbo)xf + (aobg + a3b0 — a1b2 — agbl)Ilﬂjg

+ (a1b3 — 20,2()2 + agbl)dig,

1/ 0\
5 (baa> H = (bon — b?)l‘% + (bobg — b1b2)1‘1$2 + (b1b3 — b%)l‘%

3.1.4 Modular polars.

Under the group T}, we have shown, 2%, 2} are cogredient to z1, 2. Hence the

polar operation

0 0
5 — P p
p = T} o + x5 g’ (69)

applied to any algebraic form f, or covariant of f, gives a formal modular
concomitant of f. Thus if

2 2
f =aox] + 2012122 + agx5,

then,
1
553f = apx] + a1 (21 + 2123) + axs.
This is a covariant of f modulo 3, as has been verified in Chapter I, Sec-
tion 1. Under the induced modular group af,z¥,---,a?, will be cogredient
to ag, a1, -+ ,am. Hence we have the modular Aronhold operator
0 0
dy=ab—+ - +ab,—.
P 0 ao + + maam
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If m =2, and
D = agas — a%,

then
d,D = abag — 2a8"" + agay  (mod p).

This is a formal modular invariant modulo p. It is not an algebraic invariant;
that is, not invariantive under the group generated by the transformations 7.
We may note in addition that the line

= apTy1 + ai1xo + agT3
has among its covariants modulo 2, the line and the conic

2 2 2
dol = agz1 + ajz2 + asxs,

2 2 2
02l = apzy + a125 + asxs.

3.1.5 Operators derived from the fundamental postulate.

The fundamental postulate on cogrediency (Chap. I, §2) enables us to replace
the variables in a concomitant by any set of elements cogredient to the variables,
without disturbing the property of invariance.

Theorem. Under the binary transformations T the differential operators

ai’ —% are cogredient to the variables.
) T

From T we have

0 0 0
ol )\1% + )\287532’
0 0 0

B} ZMlafm-ﬁ-Mza?Q-
Hence
0 0 0
()\H)aixz = Alw + <—> ;
0

0 0
_(AM)TM = /\267% + 2 (_3:17/1> .

This proves the theorem.
It follows that if ¢ = (ao, ..., am) (z1,22)* is any invariant function, i.e. a
concomitant of a binary form f, then

(0 a \"*
6@5: (ao,...,am)l (8:1;2’_81'1> (70)

is an invariant operator (Boole). If this operator is operated upon any covariant
of f, it gives a concomitant of f, and if operated upon a covariant of any set
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of forms g, h, ..., it gives a simultaneous concomitant of f and the set. This
process is a remarkably prolific one and enables us to construct a great variety
of invariants and covariants of a form or a set of forms. We shall illustrate it by
means of several examples.
Let f be the binary quartic and let ¢ be the form f itself. Then
64 4 4 64

04
86 =0f = ap—L 4 6 —da—2  ta
9=0f=a oxs “ dx30x1 +0a Ox30x3 5 B ox3 s oxt’

and 1
ﬂéf . f = 2(0,0@4 — 4a1a3 + 3(1%) =1.

This second degree invariant ¢ represents the condition that the four roots of
the quartic form a self-apolar range. If this process is applied in the case of a
form of odd order, the result vanishes identically.

If H is the Hessian of the quartic, then

L D 9t
OH = (aoag — al)iaq:% — 2((10@3 — alag)iaxgaxl
o o
2
+ (a0a4 + 20/10/3 — 3&2)W — 2(@1@4 — agag)W
64
— 2 —_—
+ (a2a4 a3)3m411 .
And
1
E@H - f = 6(apazas + 2a1a0a3 — aoag —a3)=J. (701)

This third-degree invariant equated to zero gives the condition that the roots of
the quartic form a harmonic range.
If H is the Hessian of the binary cubic f and

g =boxd + ...,
then
1
gaH g = [bo(a1a3 — a%) —+ bl(alag — CLoCLg) —+ b2(a0a2 — a%)]xl
+ [bl (a1a3 — ag) —+ bg(alag — a0a3) —+ bg(aoag — a%)]xz;

a linear covariant of the two cubics.

Bilinear Invariants

If f=apx!+--- is a binary form of order m and g = boz* + --- another of
the same order, then

1
—0f - g = aobm — (m
m:

1)“1bm1 +oe (1) <m> @by + -+ (=1) " ambo.

(71)
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This, the bilinear invariant of f and g, is the simplest joint invariant of the
two forms. If it is equated to zero, it gives the condition that the two forms be
apolar. If m = 2, the apolarity condition is the same as the condition that the
two quadratics be harmonic conjugates (Chap. I, §1, IV).

3.1.6 The fundamental operation called transvection.

The most fundamental process of binary invariant theory is a differential oper-
ation called transvection. In fact it will subsequently appear that all invariants
and covariants of a form or a set of forms can be derived by this process. We
proceed to explain the nature of the process. We first prove that the following
operator () is an invariant:

9 9
a-|f % ™
Oy1’ Oy2

where (y) is cogredient to (x). In fact by (70),

o) o) o) o)
)\1871 +)\237127 Higyr + H2g.,

Q= 5 5 5 5
My TA25y,0 Mgy +H2p,;

= (An)L2,

which proves the statement.
Evidently, to produce any result, {2 must be applied to a doubly binary
function. One such type of function is a y-polar of a binary form. But

Theorem. The result of operating Q) upon any y-polar of a binary form f is
zero.

For, if f =apx* + -+,

m! , o\"
P= ity = (yaw> /

"\ .1 of - 8T'f>
+ et :
<1> i b2 8.%'71‘718.%‘2 Y2 ox}

. ar+1 . 6T+1
QP: (T)y;—l f +"'+7"y;_1 f

Hence

1 O0x 0z, O0x102}
=1 8T+1f I AR P 8T+1f
% Oz 0z 1)72 oz oz’

and this vanishes by cancellation.

If © is operated upon another type of doubly binary form, not a polar, as
for instance upon fg, where f is a binary form in x7,x2 and g a binary form
in y1, Y2, the result will generally be a doubly binary invariant formation, not
Z€ro.
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DEFINITION.

If f(z) = aga* + - is a binary form in (x) of order m, and g(y) = boy} + - - -
a binary form in (y) of order n, then if y1,y> be changed to x1, zs respectively
in

(m—r)l(n—nr)! .

TQ f(@)g(y), (73)
after the differentiations have been performed, the result is called the rth
transvectant (Cayley, 1846) of f(x) and g(z). This will be abbreviated (f, g)",
following a well-established notation. We evidently have for a general formula

(f,g)TZ(m_T)IMZ(—DS(T) Of(x) ~ 0"g(x) (74)

In! r—89..5 s9,.r—S"
mln! ~ 0) Ox7°0x§ Oxfoxl

We give at present only a few illustrations. We note that the Jacobian of
two binary forms is their first transvectant. Also the Hessian of a form f is its
second transvectant. For

2 2
H = m(lezlfmzmz - xlxg)
(lm —2)
= W(fxlxlfﬂczﬂfz - 2f3:21w1 + f$2$2fx1x1)
= (f, 1)

As an example of multiple transvection we may write the following covariant

of the cubic f:

Q = (f7 (f7 f)2)1 = (a(2)a3 - 3&0&1@2 + 2@113).’113
+ 3(agaraz — 2apa3 + atag)ricy
— 3(apazas — 2a3az + ajal)ri s

— (apa3 — 3aiazaz + 2a3) s (741)

If f and g are two forms of the same order m, then (f,g)™ is their bilinear
invariant. By forming multiple transvections, as was done to obtain ), we can
evidently obtain an unlimited number of concomitants of a single form or of a
set.

3.2 The Aronhold Symbolism. Symbolical In-
variant Processes

3.2.1 Symbolical Representation.

A binary form f, written in the notation of which

46



3 2 2 3
f = aoxi] + 3a1xir2 + 3asx125 + asxs

is a particular case, bears a close formal resemblance to a power of linear form,
here the third power. This resemblance becomes the more noteworthy when
we observe that the derivative 38—;1 bears the same formal resemblance to the
derivative of the third power of a linear form:

of

6$1 n
That is, it resembles three times the square of the linear form. When we study
the question of how far this formal resemblance may be extended we are led to a
completely new and strikingly concise formulation of the fundamental processes
of binary invariant theory. Although f = agx™ 4+ --- is not an exact power, we
assume the privilege of placing it equal to the mth power of a purely symbolical
linear form ajx1 + a2z which we abbreviate ay,.

3(a0x% + 2a1z120 + azxg).

f= (121 + @)™ = ol = apgz™ +--- .

This may be done provided we assume that the only defined combinations of the
symbols aq, asg, that is, the only combinations which have any definite meaning,
are the monomials of degree m in aq, as;

m m—1 m
Oél :ao,al a2:a0,~~~,a2 = Qm,

and linear combinations of these. Thus af* 4 2o~ 'a3 means ag + 2as. But of
" ?ary is meaningless; an umbral expression (Sylvester). An expression of the
second degree like agag cannot then be represented in terms of a’s alone, since
- 3ad = o?™ 303 is undefined. To avoid this difficulty we give f a series
of symbolical representations,

f=ag =6 =",
wherein the symbols (a1, as2), (61, B2), (11, ¥2), ... are said to be equivalent
symbols as appertaining to the same form f. Then
aft =B =" =ag, 0l o = B fa = e =ag,

Now agas becomes (a*37"~343) and this is a defined combination of symbols.

In general an expression of degree ¢ in the a’s will be represented by means
of ¢ equivalent symbol sets, the symbols of each set entering the symbolical
expressions only to the mth degree; moreover there will be a series of (equivalent)
symbolical representations of the same expression, as

—323 -3_3 -3_3
apaz = of' " 7By = o'y Uy = B e =
Thus the discriminant of

2 2 2 2
f=a;=0;=...=a0r] + 2012122 + G275
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is
D = 4(0(0@2 — CL%) = 4(0&%,8% — alo@ﬁlﬁg)
2(aiBs — 201028182 + a3B7),

or
D =2(af)?,

a very concise representation of this invariant.
Conversely, if we wish to know what invariant a given symbolical expression
represents, we proceed thus. Let f be the quadratic above, and

qg= pi = 0'2 =...= bol‘% + 2bi1z129 —|—b2$§,

where p is not equivalent to ce. Then to find what J = (ap)ayp,, which evidently
contains the symbols in defined combinations only, represents in terms of the
actual coefficients of the forms, we multiply out and find

J = (o1p2 — capr) (@11 + aowa)(prav1 + paa)
= (afp1p2 — arazp})at + (afp3 — aspl)aras + (arazps — a3p1pa)as,
= (a0b1 - alb()){L‘% + ((l()bg - agbo)l‘lxg + 9a1by — agbl)l‘%.

This is the Jacobian of f and g. Note the simple symbolical form

J = (ap)agps.

3.2.2 Symbolical polars.

We shall now investigate the forms which the standard invariant processes take
when expressed in terms of the above symbolism (Aronhold, 1858).
For polars we have, when f =o' ="' = ...,

m

1 0 0
fy=— (yax) f=ap™t (yax> (11 + 2x2) = o ey,

Hence
fyr = ol "al, (75)

The transformed form of f under T will be

[ = oMz + paah) + ag( Moy + poxy)|™

= [(a1 A1 + agX2)x] + aqpy + agpo)zh]™,
or
fr = (axa] + auwy)™
=aVa™+ ..+ <T:) ay' Tana" Ty 4+ agta” (76)
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In view of (75) we have here not only the symbolical representation of the
transformed form but a very concise proof of the fact, proved elsewhere (Chap.
I, (29)), that the transformed coefficients are polars of ay = f(A1, A2) = a}".

The formula (66) for the polar of a product becomes

m an _ 1 - m n m—s _ S n—r—+s Qr—s
o Bz}yr_(m:r”);(s)(rs)az ol Bn e, (77)

where the symbols «, § are not as a rule equivalent.

3.2.3 Symbolical transvectants.

Iff=all=al=...,9=0}=b) =..., then

T T

(f g)l — LQOzmﬁn — Ozm_lﬁn_l 82 _ 62 «a B }
’ mn =Ty y=x z 4 8x18y2 8$26y1 ey y=x
(aB)ay 1By

Hence the symbolical form for the rth transvectant is

(f,9)" = (@B) e "By (78)

Several properties of transvectants follow easily from this. Suppose that g = f so
that « and § are equivalent symbols. Then obviously we can interchange o and
B in any symbolical expression without changing the value of that expression.
Also we should remember that (a3) is a determinant of the second order, and
formally

(aB) = —(Ba).
Suppose now that r is odd, r = 2k + 1. Then

(f; f)2k+1 _ (aﬁ)2k+1agl_2k_1ﬁ"_2k_l — _(aﬂ)Qk—&-la/;n—Qk—lB;,—Qk—l

Hence this transvectant, being equal to its own negative, vanishes. Every odd
transvectant of a form with itself vanishes.
If the symbols are not equivalent, evidently

(fvg)r = (_1)T(gvf)r' (79)

Also if C' is a constant,

(CF9)" =C(f,9)" (80)

(crfi+eafo+...,digi +daga+...)" = crdi(f1,91)" + crda(fi,92)" + ...
(81)
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3.2.4 Standard method of transvection.

We may derive transvectants from polars by a simple application of the funda-

mental postulate. For, as shown in section 1, if f = apz* +... = al’,
(m—=r)[of ., r of —1 of .
r=—" P .. . 82
Ty m! D vyt 1) 9 L0, Y Y2+ ..o+ D Y2 (82)
Now (y) is cogredient to (x). Hence 8%2, —6—21 are cogredient to y1,ys. If we

replace the y’s by these derivative symbols and operate the result, which we
abbreviate as 0 fy, upon a second form g = b7}, we obtain

(n—r)!

n!

Of,

- [aqzag — (;) al tagby T rhy 4 (= 1)Tabbt | am T

= (ab)"az" """ = (f,9)". (83)
When we compare the square bracket in (82) with o~ times the square bracket
in (83), we see that they differ precisely in that y;,y> has been replaced by
by, —b1. Hence we enunciate the following standard method of transvection. Let
f be any symbolical form. It may be simple like f in this paragraph, or more
complicated like (78), or howsoever complicated. To obtain the rth transvectant
of f and ¢ = b} we polarize f r times, change yi1,y2 into by, —by respectively in
the result and multiply by bY~". In view of the formula (77) for the polar of a
product this is the most desirable method of finding transvectants.
For illustration, let F be a quartic, F' = a2 = b2, and f its Hessian,

f = (ab)*aby.

Let
g:ai.
Then
(i) = (@)a2t2] | xa,
y?,y=a
(@) T2\ (2\ 2,0 (2) /(2 2\ 2\ 5.5
=5 0)\a awby—i— 1)\ Az 0ybgby + 5 ) o aybw y:axam

(84)

= é(ab)Q(ba)zaiax + %(ab)z(aa)(ba)ambxax + %(ab)Q(aa)%iaz.

Since the symbols a, b are equivalent, this may be simplified by interchanging
a, b in the last term, which is then identical with the first,

(.9 = 5(ab)*(ba) %0, + 2 (abh)(aa) (be)asbocn

50



By the fundamental existence theorem this is a joint covariant of F' and g.
Let f be as above and g = (a3)a23,, where o and 3 are not equivalent. To
find (f,g)?, say, in a case of this kind we first let

9= (af)azfs =03,

introducing a new symbolism for the cubic g. Then we apply the method just
given, obtaining

(.9 = £ (ab)(b0) %0 + 2 (ah)?(a0) (bo)asbso

We now examine this result term by term. We note that the first term could have
been obtained by polarizing g twice changing v, y2 into by, —b; and multiplying
the result by (ab)?a?. Thus

1 2 29 1 2 2 2
3 (@0 (b0) el = S(@B)ad.] | (ab)%al. (85)

Consider next the second term. It could have been obtained by polarizing g once
with regard to y, and then the result once with regard to z; then changing vy, y2
into as, —ay, and z1, 29 into by, —by, and multiplying this result by (ab)2a,b,;

2 2
3 (ab)*(ac)(bo)azbyo,

_ g(aﬁ)aiﬁx] ] x (ab)%azbs.  (86)
YY=a] z:2=b

From (85),

00| () (ot () o), e

_ g(ab)2(ab’)(ab)(5b)aiaz + %(ab)z(aﬂ)(ab)%iﬁx.
From (86),

o (GGt ()] ] s

z;2=b

_ gag(ﬂa) + ‘9‘%@(@@)} x (ab)*(aB)asbs

z;2=b

= S (@ (@B) (@D (Ba)asasts + 5 (@h)*(aB)(aa) (@) aab,

+ 2 (ab)? 0B () (aa)arsash
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Hence we have in this case

(.9 = labP(@B)(@b)(Bh)aa, + 5 () (af) (aha26,

+g(ab)Z(aﬁ)(ab)(ﬁa)%%bx + %(ab)2(a5)(aa)(ab)ﬁx%bx. (87)

3.2.5 Formula for the rth transvectant.

The most general formulas for f, g respectively are

f= ag})af) e agm)7g - /3751)5?52) . 'ﬁy(,n)v

in which

agf) = agi)m + agf)flfz, 59 = 5@% + 55“@-
We can obtain a formula of complete generality for the transvectant (f,g)" by
applying the operator §2 directly to the product fg. We have

9? r
fg=>"ai"8" o

o1 6y2 a;(cq)ﬁg(f) >
0 (@) ar) 19
Pra0 2 " ol 85

Subtracting these we obtain

(f, 9)1 _ (m —1l(n —1)! Z(a(q)ﬂ(T)) /g

m!n! a;q)ﬂg(ﬂr) )

Repetitions of this process, made as follows:

(97 = =22 S 0 g0

m!n!

(r)
z Py

2 ] L)

lead to the conclusion that the rth transvectant of f and g, as well as the mere
result of applying the operator 2 to fg r times, is a sum of terms each one of
which contains the product of r determinant factors (a3), m —r factors «,, and
n — r factors 8,. We can however write (f,¢g)" in a very simple explicit form.
Consider the special case

f=a®a®a®, g= g5,
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Here, by the rule of (88),
(f,9)* = {(@V8M)(@®)af?) + (W 5WV)(a® @)l

+ (aW ) (a®@ M) 4+ (oM 2 (a® 1))
+(@®8M) (@D 5Pl + (@@ D)2 5)al? (89)
+ (@@ 8@ (a® M)l + (@2 (M M)

+ (@MW) (@VFP)al? + <a<3 )(@?5D)alh

+ (P8 (@)l + (o) (P 51)afl) + 2131,

in which occur only six distinct terms, there being a repetition of each term.
Now consider the general case, and the rth transvectant. In the first transvec-
tant one term contains t; = (a(l)ﬁ(l))ag) . (m)ﬁ@) . ("). In the second
transvectant there will be a term wu; = (aMpM)(a Q)B DNa g3)~~ﬁ,5,3)'~
arising from Qtl, and another term w; arising from ¢y, where
ty = (aPp@)ayg Mo ~-aém)ﬁél)ﬁ§3)-~-ﬁén). Thus u1(y = ) and like-
wise any selected term occurs just twice in (f,g)%?. Again the term
v = (04(1)[3(1))(a<2)5(2))(a(3)ﬂ(3))a§04) B will oceur in (f,9)* as many
times as there are ways of permuting the three superscripts 1,2,3 or 3!
times. Finally in (f,g)", written by (88) in the form (89), each term
will be repeated r! times. We may therefore write (f,g)" as the following
summation, in which all terms are distinct and equal in number to () (7)r!:

. 1 (a(l)g(l))(a@)gw)) L (a(r)g(r))
(f,0)" = (m)(:)ﬂz aVa® ol 5 5@ ORAS

T al

(90)

y .. Py y=z

3.2.6 Special cases of operation by {2 upon a doubly binary
form, not a product.

In a subsequent chapter Gordan’s series will be developed. This series has to do
with operation by € upon a doubly binary form which is neither a polar nor a
simple product. In this paragraph we consider a few very special cases of such
a doubly binary form and in connection therewith some results of very frequent
application.

We can establish the following formula:

Q" (xy)" = constant = (r + 1)(r!)2. (91)

In proof (74),

” : T a" or
Q= Z(_l) () r—i i 7 r—1
, 1) Ox|~ "0z Oyl Oys

=0

and
-
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1=0
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Hence it follows immediately that
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A similar doubly binary form is
F = (xy) &g

If the second factor of this is a polar of £7t"~2/ we may make use of the fact,
proved before, that € on a polar is zero. An easy differentiation gives

OF = j(m+n—j+ 1)(xy) er7ep,
and repetitions of this formula give

7! (m+n—j+1)!

QF =
G-Dm+n—j—i+1)

R TR
j—i¢em—jen—j =.J 1

This formula holds true if m = n = j, that is, for Q(zy).

3.2.7 Fundamental theorem of symbolical theory.

Theorem. Every monomial expression ¢ which consists entirely of symbolical
factors of two types, e.g. determinants of type (a3) and linear factors of the type
oy and which is a defined expression in terms of the coefficients and variables
of a set of forms f,g,... is a concomitant of those forms. Conversely, every
concomitant of the set is a linear combination of such monomials.

Examples of this theorem are given in (78), (84), (87).
In proof of the first part, let

¢ = (aB)?(ay)?...alBII ...,

where f = a'; and 3,7, ... may or may not be equivalent to o, depending upon
whether or not ¢ appertains to a single form f or to a set f,g,.... Transform
the form f, that is, the set, by 7. The transformed of f is (76)

[ = (e + auxs)™.
Hence on account of the equations of transformation,
¢ = (axBu — auBr)P(aryy — apyn)?...alpB7 ...

But
a)\ﬁu - auﬁk = ()‘M)(aﬁ) (92)
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Hence
¢ = ()Pt g,

which proves the invariancy of ¢. Of course if all factors of the second type, ay,
are missing in ¢, the latter is an invariant.

To prove the converse of the theorem let ¢ be a concomitant of the set f, g, ...
and let the corresponding invariant relation be written

plah,dy,...;xh, ) = M) *é(ag, ar, . ..;x1, ). (93)

Now af = aTﬁja{L(j = 0,1,...m). Hence if we substitute these symbolical
forms of the transformed coefficients, the left-hand side of (93) becomes a sum-
mation of the type

Z PQz, " b = \w)ko(ao, ... x1,20) (w1 +ws = w), (94)

where P is a monomial expression consisting of factors of the type a;, only and
@ a monomial whose factors are of the one type a,. But the inverse of the
transformation T (cf. (10)) can be written

/ E# / fA

ST 0w T Ow
where & = —x9,& = x1. Then (94) becomes
D (1) PQEE = ()Mo (95)

We now operate on both sides of (95) by QF+«_ where

0? 02

Q= — .
OMOpe  OX20py

We apply (90) to the left-hand side of the result and (91) to the right-hand
side. The left-hand side accordingly becomes a sum of terms each term of which
involves necessarily w + k determinants (af), (af). In fact, since the result
is evidently still of order w in xy, xo there will be in each term precisely w
determinant factors of type («€) and k of type (a3). There will be no factors of
type ay or &, remaining on the left since by (91) the right-hand side becomes
a constant times ¢, and ¢ does not involve A, . We now replace, on the left,
(a€) by its equivalent o, (8€) by B, etc. Then (95) gives, after division by the
constant on the right,

¢ =a(af)?(ay)?...alB7 ..., (96)

where a is a constant; which was to be proved.

This theorem is sometimes called the fundamental theorem of the symboli-
cal theory since by it any binary invariant problem may be studied under the
Aronhold symbolical representation.
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3.3 Reducibility. Elementary Complete Irre-
ducible Systems

Illustrations of the fundamental theorem proved at the end of Section 2 will now
be given.

3.3.1 Illustrations.

It will be recalled that in (96) each symbolical letter occurs to the precise degree
equal to the order of the form to which it appertains. Note also that k + w,
the index plus the order of the concomitant, used in the proof of the theorem,
equals the weight of the concomitant. This equals the number of symbolical
determinant factors of the type (o) plus the number of linear factors of the
type o, in any term of ¢. The order w of the concomitant equals the number of
symbolical factors of the type «, in any term of ¢. The degree of the concomi-
tant equals the number of distinct symbols «, 3, ... occurring in its symbolical
representation.
Let
o = (aB)P(ay)(BYy)" ...alBs ...

be any concomitant formula for a set of forms f = o', g = 57, .... No generality
will be lost in the present discussion by assuming ¢ to be monomial, since each
separate term of a sum of such monomials is a concomitant. In order to write
down all monomial concomitants of the set of a given degree i we have only to
construct all symbolical products ¢ involving precisely ¢ symbols which fulfill
the laws

ptgt...+p=m,
p+r+...+0=n, (97)

where, as stated above, m is the order of f and equal therefore to the degree to
which « occurs in ¢, n, the order of g, and so on.

In particular let the set consist of f = a2 = 32 merely. For the concomitant
of degree 1 only one symbol may be used. Hence f = a2 itself is the only
concomitant of degree 1. If i = 2, we have for ¢,

¢ = (aB)’afBy,

and from (97)
ptp=p+to=2

Or

N~ O3
O = N
O~ N Q



Thus the only monomial concomitants of degree 2 are

azf; = f2 (aB)asfs = —(af)asfs = 0, (af)? = %D.
For the degree 3

¢ = (aB)’(av)*(BY)" b BT vz
p+q+p:27p—|—r+o':27q—|—7’—|—7':2.

It is found that all solutions of these three linear Diophantine equations lead to
concomitants expressible in the form f*D?, or to identically vanishing concomi-
tants.

DEFINITION.

Any concomitant of a set of forms which is expressible as a rational integral
function of other concomitants of equal or of lower degree of the set is said to
be reducible in terms of the other concomitants.

It will be seen from the above that the only irreducible concomitants of a
binary quadratic f of the first three degrees are f itself and D, its discriminant.
It will be proved later that f, D form a complete irreducible system of f. By this
we mean a system of concomitants such that every other concomitant of f is
reducible in terms of the members of this system. Note that this system for the
quadratic is finite. In another chapter we shall prove the celebrated Gordan’s
theorem that a complete irreducible system of concomitants exists for every
binary form or set of forms and the system consists always of a finite number of
concomitants. All of the concomitants of the quadratic f above which are not
monomial are reducible, but this is not always the case as it will be sometimes
preferable to select as a member of a complete irreducible system a concomitant
which is not monomial (cf. (87)). As a further illustration let the set of forms
be f=a2=p2=...,9g=a2 =02 =...;let i=2. Then employing only two
symbols and avoiding (a8)? = 3D, etc.

¢ = (aa)Pafag,

p+p=pto=2
The concomitants from this formula are,
o2a? = f-g, (aa)aza, = J,(aa)? = h,

J being the Jacobian, and h the bilinear invariant of f and ¢.

3.3.2 Reduction by identities.

As will appear subsequently the standard method of obtaining complete irre-
ducible systems is by transvection. There are many methods of proving con-
comitants reducible more powerful than the one briefly considered above, and
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the interchange of equivalent symbols. One method is reduction by symbolical
identities.

Fundamental identity. One of the identities frequently employed in reduction
is one already frequently used in various connections, viz. formula (92). We
write this

agby — ayby = (ab)(zy). (98)

FEvery reduction formula to be introduced in this book, including Gordan’s
series and Stroh’s series, may be derived directly from (98). For this reason this
formula is called the fundamental reduction formula of binary invariant theory
(cf. Chap. IV).

If we change y; to ca, y2 to —c1, (98) becomes

(be)ay + (ca)by, + (ab)c, = 0. (99)
Replacing = by d in (99),
(ad)(be) + (ca)(bd) + (ab)(cd) = 0. (100)
From (99) by squaring,
2(ab)(ac)byc, = (ab)*c2 + (ac)?b? — (be)?a2. (101)

If w is an imaginary cube root of unity, and
uy = (be)ag, us = (ca)by, uz = (ab)cy,
we have

(u1 + ug + us) (u1 + wug + w?us)(ur + wuy + wus)
= (ab)3c2 + (be)®a + (ca)®b2 — 3(ab)(be)(ca)azbyc, = 0. (102)

Other identities may be similarly obtained.
In order to show how such identities may be used in performing reductions,
let f=a2 =b3 =--- be the binary cubic form. Then

A=(f, f)2 - (ab)2a$b3¢7
Q = (f,8) = (ab)*(ch)azc;.

(£, Q) = 5 () (00) o+ 2y )yma X d (102,)
() (cd)(be)asd +2(ab)? (ad) (ed) ().
But by the interchanges a ~ d, b ~ ¢

(ab)2(cd)? (be)apdy = (de)?(ba)?(ch)agdy = 0.
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By the interchange ¢ ~ d the second term in the square bracket equals

(ab)?(cd)cyd,[(ad)(be) + (ca)(bd)],

or, by (100) this equals
(ab)3(cd)*cpd, = 0.

Hence (f,Q)? vanishes.
We may note here the result of the transvection (A, A)?;

R = (A, A)? = (ab)*(cd)?(ac)(bd).

3.3.3 Concomitants of binary cubic.

We give below a table of transvectants for the binary cubic form. It shows which
transvectants are reducible in terms of other concomitants. It will be inferred
from the table that the complete irreducible system for the binary cubic f

consists of

f7A7Q’R7

one invariant and three covariants, and this is the case as will be proved later.
Not all of the reductions indicated in this table can be advantageously made by
the methods introduced up to the present, but many of them can. All four of
the irreducible concomitants have previously been derived in this book, in terms
of the actual coefficients, but they are given here for convenient reference:

3 2 2 3
f =aox] + 3a1x722 + 3azx125 + asxs,

A =2(apag — a?)z? + 2(agaz — ayaz)x1z2 + 2(a1az — a3)w3, (cf. (35

2 34,3 2., 2 2
Q =(agas — 3apaias + 2a3)xy + 3(apaas — 2apa; + ajas)riTs

— 3(agasgas — 2a3az + aya3)rirs — (apa3 — 3ayazaz + 2a3)xs, (cf. (39
R =8(agas — a?)(aias — a3) — 2(apas — aiay)?. (cf. (741))

The symbolical forms are all given in the preceding Paragraph.

TABLE 1
FIRST TRANSV. SECOND TRANSV. | THIRD TRANSV.
(f?f) (fvf)QZA (f,f)3:
( ) (fv A)2 =0
( 7A): (A,A)2=R
(f.Q) = —3A% (f,Q)? =0 (f.Q)* =
(A, Q)= 3Rf (A,Q)*=0
(Q7Q) =0 (Q7Q)2 = %RA (Q7Q)3 =
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3.4 Concomitants in Terms of the Roots

Every binary form f = a]' = b)' = ... is linearly factorable in some field of
rationality. Suppose

f= (rél)ajl — rgl)xg)(réz)xl — r§2)x2) . (rém)xl - T%m)l‘g).

Then the coefficients of the form are the elementary symmetric functions of the
m groups of variables (homogeneous)

Pr? kNG = 1,2,...,m).
These functions are given by
a; = (01)7 Z ril)ﬁ@) e Tl(j)72(j+1) e TQ(m) (j=0,...,m). (103)
The number of terms in Y evidently equals the number of distinct terms obtain-
able from its leading term by permuting all of its letters after the superscripts

are removed. This number is, then,

N = (m/)ljl(m — j)! = C;.

3.4.1 Theorem on linear factors.

Theorem. Any concomitant of [ is a simultaneous concomitant of the linear
factors of f, i.e. of the linear forms

(W), (+P), ..., (1),
For,
=0 W) (@) (), (104)
and
&) = (—1) SO | DD ) (103,)
Let ¢ be a concomitant of f, and let the corresponding invariant relation be
¢' = (ap,....ap,) " (21,25)° = (W) (a0, - .., am)" (1, 22)* = (W) "0,
When the primed coefficients in ¢’ are expressed in terms of the roots from
(103;) and the unprimed coefficients in ¢ in this invariant relation are expressed

in terms of the roots from (103), it is evident that ¢’ is the same function of the
primed 7’s that ¢ is of the unprimed 7’s. This proves the theorem.
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3.4.2 Conversion operators.

In this Paragraph much advantage results in connection with formal manipula-
tions by introducing the following notation for the factored form of f:

F=aWa® ... qm. (105)

Here o) = oy + agj)xg( = 1,---,m). The a’s are related to the roots
(rgj ), réj )) of the previous Paragraph by the equations

() @ 0 _ .0

ai’ =1y a3 =~y
that is, the roots are (—&—ozéj), —agj))(j = 1,---,m). The umbral expressions

a1, as are now cogredient to agj),ozz (Chap. I, §2, VII, and Chap. I, (76)).

Hence,
L0 N 0
Hhe2y L, Y (4 _Y
(a 8a> Y 6a1+02 Oas

is an invariantive operator by the fundamental postulate. In the same way

[D,] = (aﬂ);)a) (a@)i) < (m)§a>

[DabC] = [Da][Db][DC] e

and

If the transformation 7" is looked upon as a change of reference points, the
multiplier A undergoes a homographic transformation under 7. are invariantive
operators. If we recall that the only degree to which any umbral pair a1, as can
occur in a symbolical concomitant,

¢ = Xllk(ab)(ac) - -,

of f is the precise degree m, it is evident that [Dgpe...] operated upon ¢ gives a

concomitant which is expressed entirely in terms of the roots (agj ), agj )) of f.

Illustrations follow. Let 2 ¢ be the discriminant of the quadratic

f=a =0 = ¢=(ab)’
Then
(ama) 6 = 2aMb)(ab): [Da]é = 2(aVb) (ah).

da
Hence
[Dap)p = —2(aMa@)2, (106)

This result is therefore some concomitant of f expressed entirely in terms of the
roots of f. It will presently appear that it is, except for a numerical factor, the
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invariant ¢ itself expressed in terms of the roots. Next let ¢ be the covariant Q
of the cubic f = a2 = .... Then

Q = (ab)*(ac)bscs,

1
5 [Pa] @ = (a!V0)(a®b) (ca®) bz} + (a1V0) (aPb) ()b
+ (@) (a@b) (zaMbye2,
1
1 D] Q = (aVh) (@) (ca® a2
+(a(1)a(3)(a(2)a(1))(ca(3))a§2)ci (a(l)a(2)(a(2)a(3))(ca(3))a c
+(@®a®)(@Pa®)(a®)alel + (@Da®)(@Pal)(ca)al? e}
+(al a(s))(a(3)a(2))(ca(2))ag)02—|—(a(3)a(1 Y(aPa®)(caM)aP 2
+(@@a®)(@@aM)(ca®)ael + (@Pa®)(@@a®)(cal )l
[Dane] @ = =273 "(aMa®)?(aMa®)a(H2a?), (107)

wherein the summation covers the permutations of the superscripts. This is
accordingly a covariant of the cubic expressed in terms of the roots.

Now it appears from (104) that each coefficient of f = al* = ... is of degree
m in the o’s of the roots (af’) — a{)). Hence any concomitant of degree i

will be of degree im in these roots. Conversely, any invariant or covariant
which is of degree im in the root letters o will, when expressed in terms of the
coefficients of the form, be of degree ¢ in these coefficients. This is a property
which invariants enjoy in common with all symmetric functions. Thus [Dgp)¢
above is an invariant of the quadratic of degree 2 and hence it must be the
discriminant ¢ itself, since the latter is the only invariant of f of that degree (cf.
83). Likewise it appears from Table I that @ is the only covariant of the cubic
of degree-order (3,3), and since by the present rule [Dyp.] @ is of degree-order
(3,3), (107) is, aside from a numerical multiplier, the expression for @ itself in
terms of the roots.

It will be observed generally that [D,y...] preserves not only the degree-order
(i, w) of ¢, but also the weight since w =} (im + w). If then in any case ¢
happens to be the only concomitant of f of that given degree-order (i, w), the
expression [Dgp...] ¢ is precisely the concomitant ¢ expressed in terms of the
roots. This rule enables us to derive easily by the method above the expressions
for the irreducible system of the cubic f in terms of the roots. These are

f=aPa?a®; a3
A= Z(a(l)a@))%gﬁ?’)?; (ab)?azb,.

Q= Z(a(l)a@))2(a(1)a(3))a££3)2a($2); (ab)?(ac)byc?.
R = (aMa®)?(a@a®)2(a® a2, (ab)?(cd)?(ac)(bd).
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Consider now the explicit form of Q:
2 2 2 2
Q= (au)a(z)) (a<1>a<3)) a®2q® + (a<2)a<3>) (a(%(l)) aV2q®)
2 2 2 2
n (a(3>a<1>) (a<3>a<2>) a®2qD (a<3>a<2>) (a<3>a<1>) a2q(?

n (a(z)a<1>)2 (a<2>a<3>)2 o3240 4 (a(l)a(3))2 (a(l)a(2)>2 @2,

It is to be noted that this is symmetric in the two groups of letters (agj ), aéj )).
Also each root (value off) occurs in the same number of factors as any other
root in a term of . Thus in the first term the superscript (1) occurs in three

factors. So also does (2).

3.4.3 Principal theorem.

We now proceed to prove the principal theorem of this subject (Cayley).

Definition.

In Chapter I, Section 1, II, the length of the segment joining C(ziz3), and
D(y1,y2); real points, was shown to be

Au(yz)

CD = ,
()\y1 + yg)()\ml + 172)

where X is the multiplier appertaining to the points of reference P, @, and p is
the length of the segment PQ. If the ratios z1 : x2, y1 : y2 are not real, this

formula will not represent a real segment C'D. But in any case if (rt(lj ),r(j )),
(rgk),rék)), are any two roots of a binary form f = a5, real or imaginary, we

define the difference of these two roots to be the number

(1) 7 (R)

[T(j)T(k)] = — , .
o+ Ao 3

We note for immediate use that the expression
m(r) = O + ) ) O™ + ™)

is symmetric in the roots. That is, it is a symmetric function of the two groups

of variables (T(j),TQ(j))(j = 1,...,m). In fact it is the result of substituting
(1,=A) for (z1,z2) in

f = (7D Da) . (),

and equals
(1) = (ap — mar A + ... + (=1)"a, A™).
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Obviously the reference points P, Q can be selected! so that (1,—)) is not a
root, i.e. so that II(T) # 0.

Theorem. Let f be any binary form, then any function of the two types of
differences

D@1 (7 D] = Au(r D z) /AT + 79 Oy + ),

which is homogenous in both types of differences and symmetric in the roots
(Tl(j),rz(j))(j = 1,...,m) will, when expressed in terms of x1,x2 and the co-
efficients of f, and made integral by multiplying by a power of II(T) times a
power of (Ax1 + x2), be a concomitant if and only if every one of the products
of differences of which it consists involves all roots (T(]),TQ(J)) (values of j) in
equal numbers of its factors. Moreover all concomitants of f are functions ¢
defined in this way. If only the one type of difference [T(j)r(k)] occurs in @, it is
an invariant, if only the type [T(j)z], it is an identical covariant,—a power of f
itself, and if both types occur, ¢ is a covariant. [Cf. theorem in Chap. III, §2,
VIL]

In proof of this let the explicit form of the function ¢ described in the theorem

be
o= Y [rVrO) @ Oa)e p D)
k
where
o +B+. =Bt =,
p1+0'1+...:p2+0'2+...:...,

and ¢ is symmetric in the roots. We are to prove that ¢ is invariantive when
and only when each superscript occurs in the same number of factors as every
other superscript in a term of ¢. We note first that if this property holds and
we express the differences in ¢ in explicit form as defined above, the terms of
> will, without further algebraical manipulation, have a common denominator,
and this will be of the form

[T ey + 22)”.

Hence [[(r)*(Az1 +x2)"¢ is a sum of monomials each one of which is a product
of determinants of the two types (r@)r(*) (rU)z). But owing to the cogrediency
of the roots and variables these determinants are separately invariant under 7',
hence [[(r)*(Az1 4+ z2)"¢ is a concomitant. Next assume that in ¢ it is not true
that each superscript occurs the same number of times in a term as every other
superscript. Then although when the above explicit formulas for differences are
introduced (Ax1 + x2) occurs to the same power v in every denominator in X,

LIf the transformation 7" is looked upon as a change of reference points, the multiplier A
undergoes a homographic transformation under 7.
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this is not true of a factor of the type ()\rgj) + réj)). Hence the terms of X
must be reduced to a common denominator. Let this common denominator be

[1(m)“(Az1 + x2)?. Then [[(r)“(Az1 + x2)?¢ is of the form
ZH P9 4y (p O p@yon (b8 s (7D gyer (pDg)or

where not all of the positive integers u;j, are zero. *Now ¢ is invariantive under

T. Hence it must be unaltered under the special case of T;x1 = —xb, 25 = o’.

G) — @ 6 6)
=TTy, T =T

From this ) . Hence

¢ = ZHj()\TQ(j) — Tl(j))"j“(T(l)T(z))“” (7(1)7(3))5" . (T(l)x)”*‘”

and this is obviously not identical with ¢; on account of the presence of the
factor II. Hence ¢; is not a concomitant.

All parts of the theorem have now been proved or are self-evident except
that all concomitants of a form are expressible in the manner stated in the
theorem. To prove this, note that any concomitant ¢ of f, being rational in the
coefficients of f, is symmetric in the roots. To prove that ¢ need involve the roots
in the form of differences only, before it is made integral by multiplication by
II(7)“(Azq + x2)?, it is only necessary to observe that it must remain unaltered
when f is transformed by the following transformation of determinant unity:

/ / /
1 =T+ CTy, To = Ty,

and functions of determinants (7G)7(®), (7)z) are the only symmetric func-
tions which have this property.

As an illustration of the theorem consider concomitants of the quadratic
f=(TWz®)(rPz). These are of the form

b= Z (EOp (1)] [(Q)x]an

Here owing to homogeneity in the two types of differences,
o =0 =...;00+t01=p2to2=....

Also due to the fact that each superscript must occur as many times in a term
as every other superscript,

a1 +pr =01 +01,02 +p2 =ag+09,....

Also owing to symmetry aj must be even. Hence ay = 2, p, = 0, = 3, and

() 0 +22)2 = of (r O} (V) ()} = CD7 7,

where C' is a numerical multiplier. Now « and 8 may have any positive integral
values including zero. Hence the concomitants of f consist of the discriminant
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D = —(rMr@)2 the form f = (rMz)(rPz) itself, and products of powers of
these two concomitants. In other words we obtain here a proof that f and D
form a complete irreducible system for the quadratic. We may easily derive the
irreducible system of the cubic by the same method, and it may also be applied
with success to the quartic although the work is there quite complicated. We
shall close this discussion by determining by this method all of the invariants of
a binary cubic f = —(r(M)z)(r@2z)(r®z). Here

b= Z[T(l)rﬂ)}ak ROROIEANOMOIRS
ko

and
ag + vk = ak + Br = Bk + Y-
That is,
ap = B =W = 2a.
Hence

H(r)4a¢ _ C{(r(l),4(2))2(T(2)T(3))2(r(3)r(1))2}a = CR“.

Thus the discriminant R and its powers are the only invariants.

3.4.4 Hermite’s Reciprocity Theorem.

Theorem. If a form f = al' = b* = --- of order m has a concomitant of
degree n and order w, then a form g = o = ... of order n has a concomitant
of degree m and order w.

To prove this theorem let the concomitant of f be
I = Zk(ab)p(ac)q~-~a;b;---(T+s+~-~ =w),

where the summation extends over all terms of I and k is numerical. In this
the number of distinct symbols a, b, ... is n. This expression [ if not symmetric
in the n letters a,b,c,... can be changed into an equivalent expression in the
sense that it represents the same concomitant as I, and which is symmetric. To
do this, take a term of I, as
k(ab)P(ac)?---albs - -

and in it permute the equivalent symbols a,b,... in all n! possible ways, add
the n! resulting monomial expressions and divide the sum by n!. Do this for all
terms of I and add the results for all terms. This latter sum is an expression J
equivalent to I and symmetric in the n symbols. Moreover each symbol occurs
to the same degree in every term of J as does every other symbol, and this
degree is precisely m. Now let

g=aMa®...qm,

66



and in a perfectly arbitrary manner make the following replacements in J:
a, b, c, ..., l
a®, @ a® L a )
The result is an expression in the roots (aéj), fozgj)) of g,

J, = Z ClaWa@)P(aMa®a... oD@ ..

which possesses the following properties: It is symmetric in the roots, and of
order w. In every term each root (value of (j)) occurs in the same number of
factors as every other root. Hence by the principal theorem of this section J,
is a concomitant of g expressed in terms of the roots. It is of degree m in the
coefficients of g since it is of degree m in each root. This proves the theorem.

As an illustration of this theorem we may note that a quartic form f has
an invariant J of degree 3 (cf. (701)); and, reciprocally, a cubic form ¢ has an
invariant R of degree 4, viz. the discriminant of g (cf. (39)).

3.5 (Geometrical Interpretations. Involution

In Chapter I, Section 1, II, III, it has been shown how the roots (rf),rg))(i =
1,...,m) of a binary form

f=(ag,a1,...,am)(x1,22)™

may be represented by a range of m points referred to two fixed points of
reference, on a straight line FF'. Now the evanescence of any invariant of f
implies, in view of the theory of invariants in terms of the roots, a definite
relation between the points of this range, and this relation is such that it holds
true likewise for the range obtained from f = 0 by transforming f by T. A
property of a range f = 0 which persists for f/ = 0 is called a projective property.
Every property represented by the vanishing of an invariant I of f is therefore
projective in view of the invariant equation

I(ay,...) = (Muw)*I(ag,...).

Any covariant of f equated to zero gives rise to a ”derived” point range con-
nected in a definite manner with the range f = 0, and this connecting relation
is projective. The identical evanescence of any covariant implies projective rela-
tions between the points of the original range f = 0 such that the derived point
range obtained by equating the covariant to zero is absolutely indeterminate.
The like remarks apply to covariants or invariants of two or more forms, and
the point systems represented thereby.
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3.5.1 Involution.

If
f = (aﬂvalv T Q $1,$2)m,g = (bOabla T Q xlaxQ)m

are two binary forms of the same order, then
f+kg= (ao + kbg, a1 + kb, - -- Q xl,xg)m,

where k is a variable parameter, denotes a system of qualities which are said to
form, with f and g, an involution. The * single infinity of point ranges given
by k, taken with the ranges f = 0, y = 0 are said to form an involution of point
ranges.

In Chapter I, Section 1, V, we proved that a point pair ((u),(v)) can be
found harmonically related to any two given point pairs ((p), (1)), ((¢),(s)).
If the latter two pairs are given by the respective quadratic forms f, g, the
pair ((u), (v)) is furnished by the Jacobian C of f, g. If the eliminant of three
quadratics f, g, h vanishes identically, then there exists a linear relation

f+kg+1lh=0,
and the pair h = 0 belongs to the involution defined by the two given pairs.

Theorem. There are, in general, 2(m — 1) quantics belonging to the involution
f + kg which contain a squared linear factor, and the set comprising all double
roots of these quantics is the set of roots of the Jacobian of f and g.

In proof of this, we have shown in Chapter I that the discriminant of a form
of order m is of degree 2(m—1). Hence the discriminant of f+kg is a polynomial
in k of order 2(m — 1). Equated to zero it determines 2(m — 1) values of k for
which f + kg has a double root.

We have thus proved that an involution of point ranges contains 2(m — 1)
ranges each of which has a double point. We can now show that the 2(m — 1)
roots of the Jacobian of f and g are the double points of the involution. For if
T1ug — wouy is a double factor of f + kg, it is a simple factor of the two forms

of 99 9f 9

Oy ' " Oxy 0wy | Oxy

and hence is a simple factor of the k eliminant of these forms, which is the
Jacobian of f, g. By this, for instance, the points of the common harmonic
pair of two quadratics are the double points of the involution defined by those
quadratics. The square of each linear factor of C' belongs to the involution
f+kg.

In case the Jacobian vanishes identically the range of double points of the
involution becomes indeterminate. This is to be expected since f is then a
multiple of ¢ and the two fundamental ranges f = 0, g = 0 coincide.
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3.5.2 Projective properties represented by vanishing co-
variants.

The most elementary irreducible covariants of a single binary form f =
(ap,a1,... () x1,22)™ are the Hessian H, and the third-degree covariant T, viz.

H=(ff)*T=(fH).

We now give a geometrical interpretation of each of these.

Theorem. A necessary and sufficient condition in order that the binary form
f may be the mth power of a linear form is that its Hessian H should vanish
identically.

If we construct the Hessian determinant of (roxq — rize)™, it is found to
vanish. Conversely, assume that H = 0. Since H is the Jacobian of the two first
partial derivatives of 5%7 the equation H = 0 implies a linear relation

8:1)17
2 L 9f
281‘1 1(91‘2 e
Also by Euler’s theorem
of of _
ﬂﬁlaix1 + 952572 =mf,
and of of
—d ——dxo = df.
Dy T gy 2 = U

Expansion of the eliminant of these three equations gives
ﬁ - md(ﬁlwl + HQJ?Q)
! K1Z1 + KaT2
and by integration
f = (K1w1 + Koxa)™,
and this proves the theorem.

Theorem. A necessary and sufficient condition in order that a binary quartic
form f = apx} + -+ should be the product of two squared linear factors is that
its sextic covariant T should vanish identically.

To give a proof of this we need a result which can be most easily proved by
the methods of the next chapter (cf. Appendix (29)) e.g. if i and J are the
respective invariants of f,

i = 2(apay — 4ajaz + 3a3),

ap a1 a2
J=6 ay az agl,
az az aq
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then 1

T,T)° = —(i® — 6J°).

(T.7)° = .~ 67%)
We also observe that the discriminant of f is 5-(i* — 6J%). Now write a2 as the
square of a linear form, and

F= o =at =i =
Then
H = (0343, a;)*
= 1(0a’¢2 + (go)?0? + 4(aa) (ga)aracle?
= £ [3(00)%? + 3(ga)%02 — 2(aq)?a2al.
But
(a0 = (f,02)* = 5(aq2,
(g0 = (£,2)° = 5l(0)*e? + 3(ag)e2).
Hence ) )
H = —=(aq)*f + 7 (g9)* 0. (108)

This shows that when H = 0, f is a fourth power since (aq)?, (qq)? are constants.
It now follows immediately that

T = (f,H) = (a0)(f, ac)o

Next if f contains two pairs of repeated factors, ¢2 is a perfect square, (gq)? = 0,
and T = 0. Conversely, without assumption that a2 is the square of a linear
form, if T'= 0, then

(1,7 = 5~ 6%) =0,

and f has at least one repeated factor. Let this be a,. Then from

T = $(a0)’(Jan)a? = 0,

we have either (¢q)? = 0, when ¢2 is also a perfect square, or (f,a,) = 0,
whenf = a2. Hence the condition 7' = 0 is both necessary and sufficient.

70



Chapter 4

REDUCTION

4.1 Gordan’s Series. The Quartic

The process of making reductions by means of identities, illustrated in Chapter
III, Section 3, is tedious. But we may by a generalizing process, prepare such
identities in such a way that the prepared identity will reduce certain extensive
types of concomitants with great facility. Such a prepared identity is the series
of Gordan.

4.1.1 Gordan’s series.

This is derived by rational operations upon the fundamental identity
agby = ayby + (ab)(zy).
From the latter we have
apby = [aybe + (ab)(zy)]™by, =™ (n = m)
>0 (R)ay = o= b= (ab)* (ay) k.
Since the left-hand member can represent any doubly binary form of degree-
order (m, n), we have here an expansion of such a function as a power series

in (zy). We proceed to reduce this series to a more advantageous form. We
construct the (n—k)th y-polar of

(109)

(a7, 02)* = (ab)*a =t

T )T

by the formula for the polar of a product (66). This gives
(a'rn bn)k

x ) Y/ yn—Fk
k
_ (ab)k 7&: m—k n—k qm—k—hghpm—k—hpn—m+h
() g \m k) )
(110)
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Subtracting (ab)¥a v kpm= kb” "™ from each term under the summation and
remembering that the sum of the numerical coefficients in the polar of a product
is unity we immediately obtain

(ab)*ar = o —Fpp—m

_ @), (ab)* m"“( m—k )( n—k )
g 5 Og kT rmAn—2k)
(—:Lka)hzl m—k—h)\n—m+h
—k—hpm—k—hpn—m( hph _ _hph
X a,’ b by~ " (azby — a,by). (111)

Aside from the factor () the left-hand member of (111) is the coefficient of
(xy)* in (109). Thus this coefficient is the (n—k)th polar of the kth transvectant
of @™, b minus terms which contain the factor (ab)**!(xy). We now use (111)
as a recursion formula, taking k = m,m — 1,.... This gives

(ab)™by ™" = (ay', by )y

Ay s z)y”—m’

1
(ab)m—laybxbz—m = (al, bZ)Z}L }n+1 S pmy——— 3 (a™, bn)ZfL m (zY). (112)
We now proceed to prove by induction that
(ab)kHa;”_k_lbm_k_le_m = ap(al, bg)’;j}k_l
+an (@), )y s (ay) +
o (@ ORI ey 4 (113)

)mfkfl

+am7k71(az ;b;l)nib m(‘ry ’

where the a’s are constants. The first steps of the induction are given by (112).
Assuming (113) we prove that the relation is true when k is replaced by k — 1.
By Taylor’s theorem

el =t (- D) T o (- DT (6 1) F o
Hence
(albl—albl) = tn_1(ab)" (xy)" + th_a(ab)" ' (zy)" " ayb, + .
—|—th,i(ab)hf”l(xy)h*iﬂaéflb?l +t0(ab)(:cy) h= lbh 1 (114)
Hence (111) may be written

(ab)ka RO = (a0

1) »Yx
m—k h
+ Z ZAhz ab h—i+k+1 ;n k—h+i— 1bm k—h+i— 1bn m( y)h—z+1’ (115)
h=1 i=1
in which the coefficients Aj; are numerical. But the terms

Thi _ (ab)h—i+k+la;n—k—h+i—1b;n—k—h-&-i—lb;z—m(m —k 2 h 2 1,7; § h)
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for all values of h, i are already known by (112), (113) as linear combinations
of polars of transvectants; the type of expression whose proof we seek. Hence
since (115) is linear in the Ty, its terms can immediately be arranged in a form
which is precisely (113) with & replaced by k — 1. This proves the statement.
We now substitute from (113) in (109) for all values of k. The result can
obviously be arranged in the form
ay'by = Co(a, b )yn + C1(a] ,bx)@l,n—l(ﬂﬁy) +o (116)

+ (@ b)) (xy) + -+ Coag ) ()™

It remains to determine the coefficients C;. By (911) of Chapter III we have,
after operating upon both sides of (116) by €/ and then placing y = z,

m!n!

(m —5)(n—j)!

Solving for C;, placing the result in (116) (j = 0,1,...,m), and writing the
result as a summation,

(ab) m]bnj Cj(m+n_J+1)

ab)la™ Iy,

Ay by = Z W(Iy) (ar 7bT)y L —j (117)
Jj=0 J
This is Gordan’s series.

To put this result in a more useful, and at the same time a more general form
let us multiply (117) by (ab)” and change m, n into m — r, n — r respectively.

Thus

m—r mf'r) nfr .
SO0 iam gt (115)

j=0 ( j )

If we operate on this equation by (z ) (y-Z 2k, we obtain the respective for-
mulas

(ab) al' " bibn "k
R (G P
:Zm(ﬂ?yy( N A (119)
j j
(ab)ramfrfk kbnfr

m r— k:)(n r) o

_Z m+n 2r ]+1)( y) ( o bn) n—j—r+k-* (120)

It is now desirable to recall the standard method of transvection; replace y; by
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¢2, Y2 by —c; in (119) and multiply by ¢2~"*"+* with the result

(ab)r(bc)nfrfkangrblccc;gfn+r+k

m—r\ (n—r—k
B SR e e (12

m+n 2r J+1)
J J

Likewise from (120)

(ab)r(bc) (ac)kam r— kcp n+r—=k

m—r—k\ (m—r
_ Z ju(( m bn)JﬂLT,CZ)n*J’*TWLk. (122)

m+n 2r j+1) $’ x
J

The left-hand member of equation (121) is unaltered in value except for the
factor (—1)"~* by the replacements a ~ ¢,m ~ p,r ~ n —r — k; and likewise
(122) is unaltered except for the factor (—1)"** by the replacements a ~ ¢, m ~
p,7 ~ n —r. The right-hand members are however altered in form by these
changes. If the changes are made in (121) and if we write f =07, g = a*, h =
. a; =0,a =n—1r—k,a3 =1, we obtain

Z( )

m((ﬁ )t h)eatez

D‘IZ )( )((f; )a2+] )a1+a3*j’ (123)

n+p 2a0— J+1)
J J

where we have
g +ag Fn,az+ap Fm,a +as £, (1244)

together with oy = 0.

If the corresponding changes, given above, are made in (122) and if we write
a1 = k,a0 =n —r,a3 = r, we obtain the equation (123) again, precisely. Also
relations (124;) reproduce, but there is the additional restriction as + oz = n.
Thus (123) holds true in two categories of cases, viz. (1) ay = 0 with (124;),
and (2) ag + a3 = n with (124;). We write series (123) under the abbreviation

I g9 h
n m pliastazFnazta Fm,al+as Fop,
a1 Q2 O3

(1) Q] = 07

(ii) a1 + ag = n.

It is of very great value as an instrument in performing reductions. We proceed
to illustrate this fact by proving certain transvectants to be reducible.
Consider (A, Q) of Table I.
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Here n = p = 2, m = 3, and we may take oy = 0, ag = a3 = 1, giving the series

A f A

2 3 2,

0 1 1
that is,

(A, ), ) + S8, % A) = (A, A), )+ (A, A, 1)
But
(A,A) =0, (A, f)2=0,(A,A)? = R.

Hence

(8.@)= (A, £),8) = SRF,

which was to be proved.

Next let f = a™ be any binary form and H = (f, f)? its Hessian. We wish
to show that ((f, f)2, f)? is always reducible and to perform the reduction by
Gordan’s series. Here we may employ

P
031’

and since (f, f)?**1 = 0, this gives at once

m—1 3 m—1 3 m—3 1
CO0 (1, p2 2+ ) gy o = L0 (4 gy gy,
") ") ")

Solving we obtain

m—3

m—3 .
m I (124)

((f,f)4,f)0:ml

(£, )2 02 =

where i = (f, f)*.
Hence when m 2 4 this transvectant is always reducible.

4.1.2 The quartic.

By means of Gordan’s series all of the reductions indicated in Table I and the
corresponding ones for the analogous table for the quartic, Table II below, can
be very readily made. Many reductions for forms of higher order and indeed
for a general order can likewise be made (Cf. (124)). It has been shown by
Stroh! that certain classes of transvectants cannot be reduced by this series but
the simplest members of such a class occur for forms of higher order than the

1Stroh; Mathematische Annalen, vol. 31.
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fourth. An example where the series will fail, due to Stroh, is in connection
with the decimic f = al®. The transvectant

(. 1)% )

is not reducible by the series in its original form although it is a reducible co-
variant. A series discovered by Stroh will, theoretically, make all reductions,
but it is rather difficult to apply, and moreover we shall presently develop pow-
erful methods of reduction which largely obviate the necessity of its use. Stroh’s
series is derived by operations upon the identity (ab)c, + (bc)ay + (ca)b, = 0.

TABLE 11

r=1 r=2 r=3 r=4
(f, )T 0 H 0 i
(f, H) T Lif 0 J
(f, 1) | 5(if* = 6H?) 0 1 f—iH) 0
(H,H)" 0 L(2Jf —iH) 0 242
(H,T)" | t(Jf*—ifH) 0 L(i2f—6JH) | 0
(T,T)" 0 ~(i2f* 4+ 6iH* —12JfH) 0 0

We infer from Table IT that the complete irreducible system of the quartic
consists of
f? H? T? i? J’

This will be proved later in this chapter. Some of this set have already been
derived in terms of the actual coefficients (cf. (701)). They are given below.
These are readily derived by non-symbolical transvection (Chap. III) or by
the method of expanding their symbolical expressions and then expressing the
symbols in terms of the actual coefficients (Chap. III, Section 2).

f= aoac‘lL + 4a1x:1)’m2 + 6a2x%x§ + 4a3$1xg + a4$§,
H = 2[(apay — a?)z] + 2(apas — aras)xdxy
+ (apaq + 2aia3 — Sag)x%xg +2(araq — agag)xlxg + (agay — a%)x%],
T = (adaz — 3apaias + 2a3) b + (akay + 2apa1a3 — apas + 6atas)riry
+ 5(agaray — 3agagaz + 2a2az)xixl + 10(aay — apal)rias
+ 5(—agazay + 3arazay — 2a1a3)riT) (125)
+ (9a4a? — a3ag — 2a1aza4 — 6azas)T )
+ (3asasay — aai — 2a3) xS,
i = 2(apay — 4aias + 3a3),

apg aip az
J=6la1 ax a3|=6(apazas + 2a1a2a3 — a3 — apas — atay).
as a3 Qa4

These concomitants may be expressed in terms of the roots by the methods of
Chapter III, Section 4, and in terms of the Aronhold symbols by the standard
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method of transvection. To give a fresh illustration of the latter method we
select T = (f,H) = —(H, f). Then

(H, f) = ((ab)*a2b3, c3)

- e (Y],

%(ab) (be)aZbacl + = (ab) *(ac)azbra;
= (ab)?(ac)abc3.

Similar processes give the others. We tabulate the complete totality of such
results below. The reader will find it very instructive to develop these results
in detail.

Except for numerical factors these may also be written
f — O4(1) (2) C(E3)a$4),

Z
T=2.

It should be remarked that the formula (90) for the general rth transvectant
of Chapter III, Section 2 may be employed to great advantage in representing
concomitants in terms of the roots.

With reference to the reductions given in Table IT we shall again derive in de-
tail only such as are typical, to show the power of Gordan’s series in performing
reductions. The reduction of (f, H)? has been given above (cf. (124)).

We have

—

o (2))2a 3)2 (4)2

=

a®)2(aMa3)a@ 3243, (126)

x

Q

x 13

Q
PR SN
8 8 z~z

Q
8

(
o(2)2 (P (V)2
(

a0 0 PP,

x

(_T,H)3 = ((va)7H)3 = (HaT)3'

Here we employ the series

o~
Lo =,
H»ka



This gives

3
Z Hf1+JH

j=0 j Jj=0 j

H H)3+] f)l_j~

Substitution of the values of the transvectants (H, f)", H, H)* gives

L CerH +2f).

(H,T)® = 51

The series for (T,T)? = ((f, H),T)? is
f H T
4 4 6|,
0 2 1
((f H), 1) + ((f, H)?,T) = ((f, T)* H) + %((ﬁ )%, h)°.

But 1
(T,T)% = —E(Ff2 +6iH? —12JHf),

Hence, making use of the third line in Table II,
1
(T,T)% = —E(z’QfQ +6iH? —12JHf),

which we wished to prove. The reader will find it profitable to perform all of the
reductions indicated in Table II by these methods, beginning with the simple
cases and proceeding to the more complicated.

4.2 Theorems on Transvectants

We shall now prove a series of very far-reaching theorems on transvectants.

4.2.1 Monomial concomitant a term of a transvectant

Every monomial expression, ¢, in Aronhold symbolical letters of the type pecu-
liar to the invariant theory, i.e. involving the two types of factors (ab), ay;

¢ = Hab”acq .alblel ...,

is a term of a determinate transvectant.

In proof let us select some definite symbolical letter as a and in all deter-
minant factors of ¢ which involve a set a; = —y2, az = y1. Then ¢ may be
separated into three factors, i.e.

¢ = PQaf,
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where @ is an aggregate of factors of the one type by, Q = bzcg..., and P is a
symbolical expression of the same general type as the original ¢ but involving
one less symbolical letter,

p = (be)*(bd)"...b5cT ...

x

Now PQ does not involve a. It is, moreover, a term of some polar whose index
r is equal to the order of @) in y. To obtain the form whose rth polar contains
the term PQ it is only necessary to let y = x in PQ since the latter will then go
back into the original polarized form (Chap. Ill, Section 1, I). Hence ¢ is a term
of the result of polarizing (PQ)y=,7 times, changing y into ¢ and multiplying
this result by a®. Hence by the standard method of transvection ¢ is a term of
the transvectant

(PQ)y=z,az )" (r +p =m). (127)
For illustration consider

¢ = (ab)?(ac)(bc)azbyc?

Placing a ~ y in (ab)?(ac) we have
2 2 2

¢ = —byc;(be)bsci - ay

Placing y ~ z in ¢’ we obtain
¢" = —(be)b2c3ay.

Thus ¢ is a term of

A= (—(be)b3c3,at)3.

T-x) X

In fact the complete transvectant A is

__1 3 439
+A= 20(bc)(ca) azb;, 50

1
20

and ¢ is its third term.

DEFINITION.

The mechanical rule by which one obtains the transvectant (ab)a™ 16™~1 from
the product o'}, consisting of folding one letter from each symbolical form
al, b into a determinant (ab) and diminishing exponents by unity, is called
convolution. Thus one may obtain (ab)?(ac)a,b?cs from (ab)a3bici by convo-

xr-xrTr
lution.

4.2.2 Theorem on the difference between two terms of a
transvectant.

Theorem. (1) The difference between any two terms of a transvectant is equal
to a sum of terms each of which is a term of a transvectant of lower index of
forms obtained from the forms in the original transvectant by convolution.
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(2) The difference between the whole transvectant and one of its terms is
equal to a sum of terms each of which is a term of a transvectant of lower index
of forms obtained from the original forms by convolution (Gordan).

In proof of this theorem we consider the process of constructing the formula
for the general rth transvectant in Chapter III, Section 5. In particular we
examine the structure of a transvectant-like formula (89). Two terms of this
or of any transvectant are said to be adjacent when they differ only in the
arrangement of the letters in a pair of symbolical factors. An examination of a
formula such as (89) shows that two terms can be adjacent in any one of three
ways, Viz.:

(1) p(a(i)g(j))(a(h)g(k)) and p(a(t)g(k))(a(h)g(j))’
(2) P(a®B0))al and P(a® B0))al?,
(3) P(a®@B)8) and P(a®p™)BY,
where P involves symbols from both forms f, g as a rule, and both types of

symbolical factors.
The differences between the adjacent terms are in these cases respectively

(1) Pla®a)(30)5),
(2) Paal)5,
(8) P(8MBD)af).
These follow directly from the reduction identities, i.e. from formulas (99),

(100).
Now, taking f, g to be slightly more comprehensive than in (89), let

f= Aag)ag) e awm),

g=BpYER .. .M,

where A and B involve only factors of the first type (v4). Then formula (90)
holds true;

fal-

1 Z (a(l)ﬂ(l))(a@)g@) L (a(r)g(ﬂ)
(7)) L afal? L alDp s pr

and the difference between any two adjacent terms of (f,¢)” is a term in which
at least one factor of type (af3) is replaced by one of type (aa’) or of type
(B8B’). There then remain in the term only 7 — 1 factors of type (a83). Hence
this difference is a term of a transvectant of lower index of forms obtained from
the original forms f, g by convolution.

For illustration, two adjacent terms of ((ab)2a2b2,ct)? are

g i

(f?g)T =

(ab)?(ac)®b2c2, (ab)*(ac)(be)agbyc?.

The difference between these terms, viz. (ab)3(ac)byc2, is a term of

((ab)gawbxv Ci)a
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and the first form of this latter transvectant may be obtained from (ab)?a2b?
by convolution.

Now let t1, t2 be any two terms of (f,g)”. Then we may place between ¢,
to a series of terms of (f,g)™ such that any term of the series,

t1,t11,t12, .-, t1i, to

is adjacent to those on either side of it. For it is always possible to obtain ¢, from
t1 by a finite number of interchanges of pairs of letters,—a pair being composed
either of two a’s or else of two ’s. But

t1 —ta = (t1 — t11) + (f11 — t12) + ... + (t1 — t2),

and all differences on the right are differences between adjacent terms, for which
the theorem was proved above. Thus the part (1) of the theorem is proved for
all types of terms.

Next if ¢ is any term of (f,g)”, we have, since the number of terms of this

transvectant is
m\ (n
r! ,

1
,T— :ﬁ I 128
(f.g)" —t r!(r)(r)zt t (128)
1 ;o
EEGIER

T
and by the first part of the theorem and on account of the form of the right-
hand member of the last formula this is equal to a linear expression of terms of
transvectants of lower index of forms obtained from f, g by convolution.

4.2.3 Difference between a transvectant and one of its
terms.

The difference between any transvectant and one of its terms is a linear combi-
nation of transvectants of lower index of forms obtained from the original forms
by convolution.

Formula (128) shows that any term equals the transvectant of which it is a
term plus terms of transvectants of lower index. Take one of the latter terms
and apply the same result (128) to it. It equals the transvectant of index
s < 7 of which it is a term plus terms of transvectant of index < s of forms
obtained from the original forms by convolution. Repeating these steps we
arrive at transvectants of index 0 between forms derived from the original forms
by convolution, and so after not more than 7 applications of this process the
right-hand side of (128) is reduced to the type of expression described in the
theorem.

Now on account of the Theorem I of this section we may go one step farther.
As proved there every monomial symbolical expression is a term of a determinate
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transvectant one of whose forms is the simple f = a* of degree-order (1,m).
Since the only convolution applicable to the form a* is the vacuous convolution
producing al® itself, Theorem III gives the following result:

Let ¢ be any monomial expression in the symbols of a single form f, and
let some symbol a occur in precisely r determinant factors. Then ¢ equals a
linear combination of transvectants of index < r of a?* and forms obtained from
(PQ)g=y (cf. (127)) by convolution.

For illustration

¢ = (ab)®(be)*azcs = ((ab)?azbic,)” — ((ab)’asby, ;) + %((ab)470i)0~

It may also be noted that (PQ)y=, and all forms obtained from it by convo-
lution are of degree one less than the degree of ¢ in the coeflicients of f. Hence
by reasoning inductively from the degrees 1, 2 to the degree ¢ we have the result:

Theorem. Fvery concomitant of degree i of a form f is given by transvectants
of the type A

(Cifl, f)lv
where the forms C;_1 are all concomitants of f of degree i — 1. (See Chap. III,
§2, VIL.)

4.3 Reduction of Transvectant Systems

We proceed to apply some of these theorems.

4.3.1 Reducible transvectants of a special type. (C;_1, f)".

The theorem given in the last paragraph of Section 2 will now be amplified by
another proof. Suppose that the complete set of irreducible concomitants of
degrees < i of a single form is known. Let these be

fu’yl7’727"' y Vs

and let it be required to find all irreducible concomitants of degree i. The only
concomitant of degree unity is f = a}'. All of degree 2 are given by

(£; )T = (ab)Taz" 7O,

where, of course, 7 is even. A covariant of degree i is an aggregate of symbolical
products each containing ¢ symbols. Let C; be one of these products, and a one
of the symbols. Then by Section 2 C; is a term of a transvectant

(Ci—la z;n)z,

where C;_1 is a symbolical monomial containing ¢ — 1 symbols, i.e. of degree
1 — 1. Hence by Theorem II of Section 2,

Ci=(Cict, 1)+ Y _(Cia Y (3 < 9, (129)
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where C;_; is a monomial derived from C;_; by convolution. Now C;_q, C;_1
being of degree i — 1 are rational integral expressions in the irreducible forms
f,71,---,vk. That is they are polynomials in f,v1,...,7, the terms of which
are of the type

¢i_1 = fa’thl ’YZ’“

Hence C; is a sum of transvectants of the type

(bi-1,£)'(G < m),

and since any covariant of f, of degree i is a linear combination of terms of the
type of C;, all concomitants of degree i are expressible in terms of transvectants
of the type

(bi1. £, (130)

where ¢;_1 is a monomial expression in f,~vi,...,7x, of degree i — 1, as just
explained.

In order to find all irreducible concomitants of a stated degree i we need
now to develop a method of finding what transvectants of (130) are reducible
in terms of f,7y1,...,7,. With this end in view let ¢;_1 = po, where p,o are
also monomials in f,v1,...,7, of degrees < i — 1. Let p be a*form of order nq;
p=p, and 0 = ¢2. Then assume that j < na, the order of 0. Hence we have

(¢ic1, [ = (prof,al').

Then in the ordinary way by the standard method of transvection we have the
following:

((bz 1, f) K{pnloﬂz Jo-] }y aam—J + ..
= Kp(o, fY +---. (131)
Hence if py now represents (o, f)7, then pps is a term of (¢;_1, f), so that

(di—1, ) —pp2+z L)< ). (132)

Evidently p, ps are both covariants of degree /Iti and hence are reducible in terms
of f,v1, - ,7%. Now we have the right to assume that we are constructing the
irreducible concomitants of degree i by proceeding from transvectants of a stated
index to those of the next higher index, i.e. we assume these transvectants to be
ordered according to increasing indices. This being true, all of the transvectants
(¢i—1, f)" at the stage of the investigation indicated by (132) will be known

in terms of f,v1,---,7% or known to be irreducible, those that are so, since
j'/ltj. Hence (132) shows (¢;_1, f) to be reducible since it is a polynomial in
f,71, v and such concomitants of degree i as are already known.

The principal conclusion from this discussion therefore is that irreducible
concomitants of degree i are obtained only from transvectants (¢;_1, f)7 for
which no factor of order = j occurs in ¢; 1. Thus for instance if m = 4, (f2, f)?
is reducible for all values of j since f? contains the factor f of order 4 and j
cannot exceed 4.

We note that if a form v is an invariant it may be omitted when we form
¢i_1, for if it is present (¢;_1, f)? will be reducible by (80).
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4.3.2 Fundamental systems of cubic and quartic.

Let m = 3 (cf. Table I). Then f = a2 is the only concomitant of degree 1.
There is one of degree 2, the Hessian (f, f)? = A. Now all forms ¢ of (¢, f)?
are included in

¢2 = faAﬂa

and either « = 2,8 = 0, or a = 0,8 = 1. But (f?, f)? is reducible for all
values of j since f? contains the factor f of order 3 and j % 3. Hence the only
transvectants which could give irreducible concomitants of degree 3 are

(Avf)j (] = 1’2)'

But (A, f)? = 0 (cf. Table I). In fact the series

frr
3 3 3
1 2 1

gives 2((f, )%, 1) = =((f, /)%, f)? = —(A, f)> = 0. Hence there is one irre-
ducible covariant of degree 3, e.g.

(A>f) =—Q.

Proceeding to the degree 4, there are three possibilities for ¢3 in (¢3, f)7.
These are ¢3 = f3, fA,Q. Since j # 3 (f3, )7, (fA, )/ (j = 1,2,3) are all
reducible by Section 3, I. Of (@, f) (5 = 1,2, 3),(Q, f)?> = 0, as has been proved
before (cf. (102)), and (Q, f) = $A? by the Gordan series (cf. Table I)

fAaf
3 2 3
0 1 1

Hence (Q, f)® = —R is the only irreducible case. Next the degree 5 must be
treated. We may have

¢)4:f47f2Aan7RaA2'

But R is an invariant, A is of order 2, and @ of order 3. Hence since j % 3
in (¢4, f)7 the only possibility for an irreducible form is (A2, f)7, and this is
reducible by the principle of I if j < 3. But

(A% f)? = (07677, a3)° = (8a)*(8'a)d;, = (87, (da)®az) = 0.

For (6a)%a, = (A, f)? = 0, as shown above. Hence there are no irreducible
concomitants of degree 5. It immediately follows that there are none of degree
> 5, either, since ¢5 in (¢s, f)7 is a more complicated monomial than ¢, in
the same forms f,A,Q and all the resulting concomitants have been proved
reducible.
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Consequently the complete irreducible system of concomitants of f, which
may be called the fundamental system (Salmon) of f is

f7A7Q7R'

Next let us derive the system for the quartic f; m = 4. The concomitants
of degree 2 are (f, f)2 = H, (f, f)* = i. Those of degree 3 are to be found from

(Hmf)](J = 1,27374)~

Of these (f, H) = T and is irreducible; (f, H)* = J is irreducible, and, as has
been proved, (H, f)? = £if (cf. (124)). Also from the series

rrr
4 4 4],
1 3 1

(H, f)? = 0. For the degree four we have in (¢3, f)
¢3 = f37 fHa T,

all of which contain factors of order = j % 4 except T. From Table II all of the
transvectants (T, f)?(j = 1,2, 3,4) are reducible or vanish, as has been, or may
be proved by Gordan’s series. Consider one case; (T, f)*. Applying the series

f H f
4 4 4,
1 3 1
we obtain 3
((fﬂH)vf)4 = _((faH)2af)3 - E((fﬂH)gaf)2

But ((f, H)?, f)% = %i(f, f)? =0; and (f, H)® = 0 from the proof above. Hence

((va)af)4 = (T7f)4 =0.

There are no other irreducible forms since ¢4 in (¢4, f)* will be a monomial in
f, H, T more complicated than ¢3. Hence the fundamental system of f consists
of

%

f?H’T’i7J;

It is worthy of note that this has been completely derived by the principles of
this section together with Gordan’s series.

4.3.3 Reducible transvectants in general.

In the transvectants studied in (I) of this section, e.g. (¢;_1, f)?, the second
form is simple, f = a}', of the first degree. It is possible and now desirable to
extend those methods of proving certain transvectants to be reducible to the
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more general case where both forms in the transvectants are monomials in other
concomitants of lesser degree.

Consider two systems of binary forms, an (A) system and a (B) system. Let
the forms of these systems be

(A): Ay, Ag, ..., Ag, of orders aq,aq, .. ., ai respectively;
and

(B): By, Bs,...,By, of orders by, ba, ..., by respectively.
Suppose these forms expressed in the Aronhold symbolism and let

¢ = ASTASE . AY o= BIBY? . B

Then a system (C') is said to be the system derived by transvection from (A)
and (B) when it includes all terms in all transvectants of the type

(6, 0)". (133)

Evidently the problem of reducibility presents itself for analysis immediately.
For let

¢ = po, ¥ = pv,
and suppose that j can be separated into two integers,
J=J1+J2

such that the transvectants A
(P, )", (o, v)"

both exist and are different from zero. Then the process employed in proving
formula (132) shows directly that (¢,)? contains terms which are products of
terms of (p, p)®* and terms of (o, v)%, that is, contains reducible terms.

In order to discover what transvectants of the (C) system contain reducible
terms we employ an extension of the method of Paragraph (I) of this section.
This may be adequately explained in connection with two special systems

(4) = f.(B) =i,
where f is a cubic and ¢ is a quadratic. Here
(C) = (9, 9)" = (f*,i")"
Since f® must not contain a factor of order > j, we have
3a—3<j<3a;j =3a,3a — 1,3cx — 2.

Also
28-2<j<2B;5=2B,26—-1.

Consistent with these conditions we have
(f24), (F, )% (F,%)%, (F2,8)% (£2,4%)%, (F2,%)°, (F%, )T, (F2,4%)%, (2, 0%)%, .
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Of these, (f2,i?)* contains terms of the product (f,7)?(f,)?, that is, reducible
terms. Also (f2,i%)% is reducible by (f,4)? (f,i%)%. In the same way (f3,i%)7,
...all contain reducible terms. Hence the transvectants of (C) which do not
contain reducible terms are six in number, viz.

£, (F,2), (F, 02, (F,8%), (F2,8%)°
The reader will find it very instructive to find for other and more complicated
(A) and (B) systems the transvectants of (C') which do not contain reducible
terms. It will be found that the irreducible transvectants are in all cases finite
in number. This will be proved as a theorem in the next chapter.

4.4 Syzygies

We can prove that m is a superior limit to the number of functionally indepen-
dent invariants and covariants of a single binary form f = a* of order m. The
totality of independent relations which can and do subsist among the quantities

xlvx%mllax;aagvai(i =0,... am)a )\1,)\27[1,1,/1,2,]\4 = ()‘/1‘)

are m + 4 in number. These are

m—i

ap=a ay (i =0,...,m); 1 = @) + pnxh, 2 = Ao + puoxh;
M = Mg — Aapir.

When one eliminates from these relations the four variables A1, Ag, p1, 2 there
result at most m relations. This is the maximum number of equations which can
exist between o, a;(i = 0,...,m),x1,za, 2], 25, and M. That is, if a greater
number of relations between the latter quantities are assumed, extraneous con-
ditions, not implied in the invariant problem, are imposed upon the coeflicients
and variables. But a concomitant relation

plaly, ..., ol 2l xh) = MFp(ag, ..., Qm,z1,22)

is an equation in the transformed coefficients and variables, the untransformed
coefficients and variables and M. Hence there cannot be more than m alge-
braically independent concomitants as stated.

Now the fundamental system of a cubic contains four concomitants which are
such that no one of them is a rational integral function of the remaining three.
The present theory shows, however, that there must be a relation between the
four which will give one as a function of the other three although this function
is not a rational integral function. Such a relation is called a syzygy (Cayley).
Since the fundamental system of a quartic contains five members these must also
be connected by one syzygy. We shall discover that the fundamental system of
a quintic contains twenty-three members. The number of syzygies for a form of
high order is accordingly very large. In fact it is possible to deduce a complete
set of syzygies for such a form in several ways. There is, for instance, a class of
theorems on Jacobians which furnishes an advantageous method of constructing
syzygies. We proceed to prove these theorems.
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4.4.1 Reducibility of ((f,g),h).

Theorem. If f g, h are three binary forms, of respective orders n,m,p all
greater than unity, the iterated Jacobian ((f,g),h) is reducible.

The three series

fg n
n om pl,
0 1 1
hf g
p n my,
0 1 1
g h f
m p n
0 1 1
give the respective results
-1 -1
((Fr9)0) = (£, 1), 9) + =5 (g = 2 =5 (F.9)*h,
-1 -1
(1) 9) == (U 9), ) = L m g (g = (),
1 1
((g: 1), f) = (g, f), h) + #(97 f)?h - miiH(g’h)Qf'

We add these equations and divide through by 2, noting that (f,g) = —(g, f),
and obtain

((f’ g)vh) =

n—m

Smrn—o9) 9)*h + %(f, B2 — = (g, h)*F. (134)

2

This formula constitutes the proof of the theorem. It may also be proved
readily by transvection and the use of reduction identity (101).

4.4.2 Product of two Jacobians.

Theorem. Ife =a',f =02,9 = &, h = di are four binary forms of orders
greater than unity, then

(e, )9 ) =~ 5 (e, Fh+ 3)es W) fg + 3 (F9)eh — 2 (f,9)%q. (135)

We first prove two new symbolical identities. By an elementary rule for
expanding determinants

CL% a1a9 a%
b?  biby b3 = —(ab)(bc)(ca).
C% C1C2 C%
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Hence

a? ajay a3||d? —2dedy d?
b2 byby B3| |e2  —2e0e; €2
G ace G||f5 2ffi
= 2(ab)(bc)(ca)(de)(ef)(fd)
(ad)?  (ae)® (af)?
= [(bd)*  (be)*> (bf)?|. (136)

(cd)?  (ce)* (cf)?

In this identity set ¢; = —x9,c0 = x1, f1 = —x2, fo = 1.
Then (136) gives the identity.

[ &)

(ad)?  (ae)? a3
2(ab)(de)aybpdye, = |(bd)?  (be)? b2 (137)
d? e? 0

We now have

(e, f)(g,h) = (a,b)(c; d)ai g~ h g™
(ac)® (ad)? a2

1 x
= SarT AR (be)? (b b
2 @20

Cx

by (137). Expanding the right-hand side we have formula (135) immediately.

4.5 The square of a Jacobian.

The square of a Jacobian J = (f, g) is given by the formula

—2J% = (£, 1?9+ (9,9)°f* = 2(f,9)* fg. (138)

This follows directly from (135) by the replacements

e=f,f=99=fh=yg.

4.5.1 Syzygies for the cubic and quartic forms.

In formula (138) let us make the replacements J = Q, f = f,g = A, where f is
a cubic, A is its Hessian, and @ is the Jacobian (f, A). Then by Table I

S =2Q%+ A%+ RF? =0. (139)

This is the required syzygy connecting the members of the fundamental system
of the cubic.

Next let f, H,T,1,J be the fundamental system of a quartic f. Then, since
T is a Jacobian, let J =T, f = f, g = H in (138), and we have

—2T?% = H® — 2(f, H)*fH + (H, H)* f*.
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But by Table II
9 1. o 1 .
Hence we obtain
1 1
S:2T2+H3—§if2H+§Jf3:O. (140)

This is the syzygy connecting the members of the fundamental system of the
quartic.

Of the twenty-three members of a system of the quintic nine are expressible
as Jacobians (cf. Table IV, Chap. VI). If these are combined in pairs and
substituted in (135), and substituted singly in (138), there result 45 syzygies
of the type just derived. For references on this subject the reader may consult
Meyer’s ” Bericht ueber den gegenwértigen Stand der Invariantentheorie” in the
Jahresbericht der Deutschen Mathematiker-Vereinigung for 1890-91.

4.5.2 Syzygies derived from canonical forms.
We shall prove that the binary cubic form,
f= aoxf + 3&1.’17%.’1]2 + 3a2x1x§ + agacg,
may be reduced to the form,
f=X>+Y?,

by a linear transformation with non-vanishing modulus. In general a binary
quantic f of order m has m + 1 coefficients. If it is transformed by

T :x1 = Mz) + s, 12 = Mz + powh,

four new quantities A1, g1, Ao, p2 are involved in the coefficients of f’. Hence
no binary form of order m with less than m — 3 arbitrary coefficients can be
the transformed of a general quantic of order TO by a linear transformation.
Any quantic of order m having just m — 3 arbitrary quantities involved in its
coefficients and which can be proved to be the transformed of the general form f
by a linear transformation of non-vanishing modulus is called a canonical form
of f. We proceed to reduce the cubic form f to the canonical form X3 + Y3,
Assume

f=aox?+...=pi(z1 +o122)® + po(x1 + anrs)® = X3 + Y3, (140,)

This requires that f be transformable into its canonical form by the inverse of
the transformations

1 1 1 1
S: X =pix1+piaix,Y =pdx1 +psaxe.
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We must now show that pi, ps, a1, @s may actually be determined, and that the
determination is unique. Equating coefficients in (140;) we have

p1 + p2 = Qo,
a1p1 + qaps = oy, (1402)

2 2
aip1 + agpr = g,

3 3
a1p1 + asps = as.

Hence the following matrix, M, must be of rank 2:

1 o o of
M=|1 a; a3 a3

Qp Q1 G2 O3

From M = 0 result

1 o o 1 o o
1 a a3|=0,]1 a oi|=0.
Qo Q1 2 ap G O3

Expanding the determinants we have

Pay + Qo + Rag = 0,
Pay + Qas + Rag =0,

Also, evidently
P+ Qa; +Ra? =0(i = 1,2)

Therefore our conditions will all be consistent if aq,as are determined as the
roots, & + &2, of

1 &%) a1 (%)

—A =y Qs asz| = 0.

2 & L& &

This latter determinant is evidently the Hessian of f, divided by 2. Thus the
complete reduction of f to its canonical form is accomplished by solving its
Hessian covariant for the roots ag, a2, and then solving the first two equations
of (1405) for p1,ps. The inverse of S will then transform f into X3 + Y3. The
determinant of .S is

D = (p1 - p2)* (a2 — a1),

and D # 0 unless the Hessian has equal roots. Thus the necessary and sufficient
condition in order that the canonical reduction be possible is that the discrim-
inant of the Hessian (which is also the discriminant, R, of the cubic f) should
not vanish. If R = 0, a canonical form of f is evidently X2Y.

Among the problems that can be solved by means of the canonical form are,
(a) the determination of the roots of the cubic f =0 from

X347V = (X +Y)(X +wY)(X +w?Y).
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w being an imaginary cube root of unity, and (b) the determination of the
syzygy among the concomitants of f. We now solve problem (b). From Table
I, by substituting ag = a3 = 1,13 = as = 0, we have the fundamental system
of the canonical form:

X3 4+Y32XY, X3 Y3 —2.

Now we may regard the original form f to be the transformed form of X3 4 Y3
under S. Hence, since the modulus of S is D, we have the four invariant relations

f=X>+Y?
A =2D?*XY,
Q=D}X*-Y?),
R=-Db5.2.

It is an easy process to eliminate D, X,Y from these four equations. The result
is the required syzygy:
fPR4+2Q*+ A% =0
A general binary quartic can be reduced to the canonical form (Cayley)
Xt Yt 4 6mX?Y?
a ternary cubic to the form (Hesse)

X34+ + 22 +6mXY Z.

An elegant reduction of the binary quartic to its canonical form may be
obtained by means of the provectant operators of Chapter 111, Section 1, V. We
observe that we are to have identically

f=(ag,a1,...,a4)(x1,22)* = X7 + X3 +6mX2 X2,
where X1, X5 are linear in x1, x9;
X1 = a1z1 + Qara, Xo = f111 + Baza.
Let the quadratic X; X be ¢ = (Ag, A1, As) (w1, 22)?. Then

o 9\’
CXP= (A0, AL A) [ =—,—=— ) Xt=0(=1,2).
Jq - X = (Ao, Ay, 2)<€)x2’ 8x1> ;=0( ,2)
6mdq- XiX3 =12-2(4A0A; — AD)mX1 Xs = 120X X.

Equating the coefficients of x2, 712,23 in the first equation above, after oper-
ating on both sides by dq, we now have

A0a2 — A1a1 + A2a0 = )\1407
1

Apas — Ajas + Asaq = 5)\140,

A0a4 - A1a3 + AQCI,Q = )\AQ
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Forming the eliminant of these we have an equation which determines A, and
therefore m, in terms of the coefficients of the original quartic f. This eliminant
is

ap aq as — A
1
a1 as + 5)\ as =0,
ag — A as aq

or, after expanding it,
1 1
N CiN— T =
2z 3J 0,

where 4, J are the invariants of the quartic f determined in Chapter III, §1, V.
It follows that the proposed reduction of f to its canonical form can be made
in three ways.
A problem which was studied by Sylvester,? the reduction of the binary
sextic to the form
X? + 25+ X§ 4+ 30mXT X3 X3,

has been completely solved very recently by E. K. Wakeford.?

4.6 Hilbert’s Theorem

We shall now prove a very extraordinary theorem due to Hilbert on the reduction
of systems of quantics, which is in many ways closely connected with the theory
of syzygies. The proof here given is by Gordan. The original proof of Hilbert
may be consulted in his memoir in the Mathematische Annalen, volume 36.

4.6.1 Theorem

Theorem. If a homogeneous algebraical function of any number of variables be
formed according to any definite laws, then, although there may be an infinite
number of functions F satisfying the conditions laid down, nevertheless a finite
number Fyi, Fo, ..., F. can always be found so that any other F' can be written
in the form

F=AF+AFR+---+AF,

where the A’ s are homogeneous integral functions of the variables but do not
necessarily satisfy the conditions for the F'’s.

An illustration of the theorem is the particular theorem that the equation of
any curve which passes through the intersections of two curves F; = 0, F» =0
is of the form

F = A1F1 +A2F2 =0.

Here the law according to which the F’s are constructed is that the correspond-
ing curve shall pass through the stated intersections. There are an infinite
number of functions satisfying this law, all expressible as above, where A;, A

2Cambridge and Dublin Mathematical Journal, vol. 6 (1851), p. 293.
3Messenger of Mathematics, vol. 43 (1913-14), p. 25.
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are homogeneous in x1,xs,x3 but do not, as a rule, represent curves passing
through the intersections.
We first prove a lemma on monomials in n variables.

Lemma 1. If a monomial z¥'ak? .. zkn

.xyr, where the k’s are positive integers,
be formed so that the exponents ki ..., ky, satisfy prescribed conditions, then,
although the number of products satisfying the given conditions may be infinite,
nevertheless a finite number of them can be chosen so that every other is divisible

by one at least of this finite number.

To first illustrate this lemma suppose that the prescribed conditions are

2k + 3ko — k3 — kg =0, (141)
by + kg = ko + k.

Then monomials satisfying these conditions are

w2a2adal piaday, voxsa?, vivexiad, . ..
and all are divisible by at least one of the set z3z3z,, Toz32].

Now if n = 1, the truth of the lemma is self-evident. For all of any set of
positive powers of one variable are divisible by that power which has the least
exponent. Proving by induction, assume that the lemma is true for monomials
of n — 1 letters and prove it true for n letters.

Let K = %252 . z¥» be a representative monomial of the set given by the
prescribed conditions and let P = z7'xz3? ... 2% be a specific product of the
set. If K is not divisible by P, one of the numbers k must be less than the
corresponding number a. Let k,. < a,.. Then k, has one of the series of values

0,1,2,...,a, — 1,

that is, the number of ways that this can occur for a single exponent is finite
and equal to
N=a1+as+...+ay,.

The cases are

k1 equals one of the series 0,1,--- ,a; — 1; (a1 cases),

k2 equals one of the series 0,1, -+ ,as — 1; (a2 cases), (142)

etc.

Now let k, = m and suppose this to be case number p of (142). Then the n—
1 remaining exponents ki, ko, -+ ,kr—1,kry1, - , ky, satisfy definite conditions

which could be obtained by making k, = m in the original conditions. Let

_ k1 _ ko m kn _ . my-!
Ky, =a'wy =" - al’ oy = a'K,

be a monomial of the system for which k. = m. Then K, contains only m — 1
letters and its exponents satisfy definite conditions which are such that xTKZ’)
satisfies the original conditions. Hence by hypothesis a finite number of mono-
mials of the type K, say,

Ly, Ly, -, Lg,,
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exist such that all monomials Kz/7 are divisible by at least one L. Hence K, =
J:TK]’D is divisible by at least one L, and so by at least one of the monomials

M©Y =Ly, M® =2 Ly, -+, M{"™) = 2™ L, .

Also all of the latter set of monomials belong to the original system. Thus in
the case number p in (142) K is divisible by one of the monomials

1 2 a,
Mzg)szg)f" »Mé »),

Now suppose that K is not divisible by P. Then one of the cases (142) certainly
arises and so K is always divisible by one of the products

M1<1>’M1<2>’... 7M1<a1>7M2<1>7M2<2>,,.. ’M2<az>’... 7MJ<VQN>,

or else by P. Hence if the lemma holds true for monomials in n — 1 letters, it
holds true for n letters, and is true universally.

We now proceed to the proof of the main theorem. Let the variables be
X1, - -, Xn and let F be a typical function of the system described in the theorem.
Construct an auxiliary system of functions 1 of the same variables under the
law that a function is an n function when it can be written in the form

n=SAF (143)

where the A’s are integral functions rendering n homogeneous, but not otherwise
restricted except in that the number of terms in 7 must be finite.
Evidently the class of n functions is closed with respect to linear operations.
That is,
YBn=Bin + Bana + ... = XBAF = S A'F

is also an 7 function. Consider now a typical n function. Let its terms be
ordered in a normal order. The terms will be defined to be in normal order if
the terms of any pair,
S=xPxg X T = XPxs o

are ordered so that if the exponents a,b of S and T are read simultaneously
from left to right the term first to show an exponent less than the exponent in
the corresponding position in the other term occurs farthest to the right. If the
normal order of S, T is (S,T'), then T is said to be of lower rank than S. That
is, the terms of 77 are assumed to be arranged according to descending rank and
there is a term of highest and one of lowest rank. By hypothesis the 7 functions
are formed according to definite laws, and hence their first terms satisfy definite
laws relating to their exponents. By the lemma just proved we can choose a
finite number of n functions, 71,72, ...7, such that the first term of any other
7 is divisible by the first term of at least one of this number. Let the first term
of a definite n be divisible by the first term of 7,,, and let the quotient be P;.
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Then n — Py, is an n function, and its first term is of lower rank than the
first term of 7. Let this be denoted by

N = Pinm, +n0.

Suppose next that the first term of (! is divisible by Nmy; thus,
N = Pynm, + 1,

and the first term of 1(?) is of lower rank than that of n"). Continuing, we
obtain

N = P 4.

Then the first terms of the ordered set

are in normal order, and since there is a term of lowest rank in 77 we must have
for some value of r

0" = Panmga.
That is, we must eventually reach a point where there is no n function n("*+1) of

the same order as n and whose first term is of lower rank than the first term of
n("). Hence

n=Pim, + Polmy, + ... + P7'+177m7~+1 (144)

and all n’s on the right-hand side are members of a definite finite set

’171,772,...,77p.

But by the original theorem and (143), every F is itself an n function. Hence
by (144)

F=AF+ A +...+ A F, (145)

where F;(i = 1,...,r) are the F functions involved linearly in 71, m2,...,70p.
This proves the theorem.

4.6.2 Linear Diophantine equations.

If the conditions imposed upon the exponents k consist of a set of linear Dio-
phantine equations like (141), the lemma proved above shows that there exists
a set of solutions finite in number by means of which any other solution can be
reduced. That is, this fact follows as an evident corollary.
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Let us treat this question in somewhat fuller detail by a direct analysis of the
solutions of equations (141). The second member of this pair has the solutions

ki, ko, k3, ku,
1 o o0 1 1
2 0o 1 o0 1
@ 1 0 1 0
4 1 1 0 o0
G) 2 1 1 0
6@ 0 0 1 1

Of these the fifth is obtained by adding the first and the fourth; the sixth is
reducible as the sum of the third and the fourth, and so on. The sum or difference
of any two solutions of any such linear Diophantine equation is evidently again a
solution. Thus solutions (1), (2), (3), (4) of k1 + k4 = ko + k3 form the complete
set of irreducible solutions. Moreover, combining these, we see at once that the
general solution is

Dki=x+yka=x+zks=y+wks=2+w.
Now substitute these values in the first equation of (141)
2k1 + 3ky — 3ks — ky = 0.

There results
5r +y + 2z = 2w

By the trial method illustrated above we find that the irreducible solutions of
the latter are

r=2,w=5y=2,w=Lz=1lw=Lr=1,y=1w=23,

where the letters not occurring are understood to be zero. The general solution
is here
(I) z =2a+d,y=2b+d,z =c,w=>5a+ b+ c+ 3d,

and if these be substituted in (I) we have
k1 = 2a+ 2b+ 2dks = 2a + c+ dks = 5a+ 3b+ ¢+ 4dkys = 5a + b+ 2¢ + 3d

Therefore the only possible irreducible simultaneous solutions of (141) are

kla k?» k37 k4
1 2 2 5 5
2 2 0 3 1
@3 0 1 1 2
4 2 1 4 3
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But the first is the sum of solutions (3) and (4); and (4) is the sum of (2) and
(3). Hence (2) and (3) form the complete set of irreducible solutions referred to
in the corollary. The general solution of the pair is

k1 =2a,ke = B, k3 = 3a, kg = o+ 20.
The corollary may now be stated thus:

Corollary 1. Every simultaneous set of linear homogeneous Diophantine equa-
tions possesses a set of irreducible solutions, finite in number.

A direct proof without reference to the present lemma is not difficult.* Ap-
plied to the given illustration of the above lemma on monomials the above
analysis shows that if the prescribed conditions on the exponents are given by
(141) then the complete system of monomials is given by

2a,.6, .3a+8 a+23
T T3 Ty )

where o and 8 range through all positive integral values independently. Every
monomial of the system is divisible by at least one of the set

2.3 2
$1I3$4, .2323331‘4,

which corresponds to the irreducible solutions of the pair (141).

4.6.3 Finiteness of a system of syzygies.

A syzygy S among the members of a fundamental system of concomitants of a
form (cf. (140)) f,
LiIs,... 1,

is a polynomial in the I's formed according to the law that it will vanish iden-
tically when the I’s are expressed explicitly in terms of the coefficients and
variables of f. The totality of syzygies, therefore, is a system of polynomials
(in the invariants I) to which Hilbert’s theorem applies. It therefore follows at
once that there exists a finite number of syzygies,

S1,89,...,5,
such that any other syzygy S is expressible in the form
S=C1581+Cy5+---+C.S, (146)

Moreover the C’s, being also polynomials in the I’s are themselves invariants of
f. Hence

Theorem. The number of irreducible syzygies among the concomitants of a
form f is finite, in the sense indicated by equation (146).

4Elliott, Algebra of Qualities, Chapter IX.
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4.7 Jordan’s Lemma

Many reduction problems in the theory of forms depend for their solution upon
a lemma due to Jordan which may be stated as follows:

Lemma 2. If u; +us+usg = 0, then any product of powers of ui,us,us of order
n can be expressed linearly in terms of such products as contain one exponent
equal to or greater than %n

We shall obtain this result as a special case of a considerably more general
result embodied in a theorem on the representation of a binary form in terms
of other binary forms.

Theorem. If a;,b;,cy,... are r distinct linear forms, and A,B,C, ... are bi-
nary forms of the respective orders «, 3,7, ... where
a+p+y+...=n—r+1

then any binary form f of order n can be expressed in the form
f=a" A+ PB4+ CMC+ ..,
and the expression is unique.

As an explicit illustration of this theorem we cite the case n = 3,7 = 2.
Then a+=2,a==1.

f = aZ(poox1 + porza) + b3 (pro=1 + priza) (147)

Since f, a binary cubic, contains four coefficients it is evident that this relation
(147) gives four linear nonhomogeneous equations for the determination of the
four unknowns pog, po1, P10, P11- LThus the theorem is true for this case provided
the determinant representing the consistency of these linear equations does not
vanish. Let a, = a1x1 + asxa, b, = by + baxo, and D = a1bs — asb;. Then the
aforesaid determinant is

a? 0 b? 0

2a1 as a% 2b1 b2 b%
Cl% 2&1 ag b% 2b1 b2
0 a3 0 b2

This equals D*, and D # O on account of the hypothesis that a, and b, are
distinct. Hence the theorem is here true. In addition to this we can solve for
the p, and thus determine A, B explicitly. In the general case the number of
unknown coefficients on the right is

a+B8+y+...+r=n+1

Hence the theorem itself may be proved by constructing the corresponding con-
sistency determinant in the general case;® but it is perhaps more instructive to
proceed as follows:

5Cf. Transactions Amer. Math. Society, Vol. 15 (1914), p. 80.
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It is impossible to find r binary forms A, B, C, ... of orders a, 3,7, . .. where
a+fB8+y+...=n—-r+1,
such that, identically,
E=a"“A+b" PB4+ 7CH+...=0.

In fact suppose that such an identity exists. Then operate upon both sides of
this relation o + 1 times with

Aeayd 40

a]— (ap = a121 + asxs).
8%1 8:52 L

Let g2 be any form of order n and take az = 0. Then

AL = K(ay - g2)* gl

— kla?%*lg?faflgé)ﬁ»lxn—a—l —924 kga?+1gf’”"293‘+2x§’°"2

a+1 n—a—1
+ .ot kn_aalT gyl ,

where the k’s are numerical. Hence A“*1g" cannot vanish identically in case
as = 0, and therefore not in the general case as # 0, except when the last n — «
coeflicients of ¢ vanish: that is, unless ¢ contains a?~“ as a factor. Hence

A = b P71 + 70

where B’, C' are of orders 3,7, ... respectively. Now At E is an expression of
the same type as E, with r changed into r — 1 and n into n — «a — 1, as is verified
by the equation

B+v+...=n—a-1)—-(r—-1+1l=n—-r+l1l—-a

Thus if there is no such relation as ¥ = 0 for r — 1 linear forms a,,b,,...,
there certainly are none for r linear forms. But there is no relation for one
form (r = 1) save in the vacuous case (naturally excluded) where A vanishes
identically. Hence by induction the theorem is true for all values of r.

Now a count of coefficients shows at once that any binary form f of order
n can be expressed linearly in terms of n + 1 binary forms of the same order.
Hence f is expressible in the form

f=a" YA+ PB4+ "D+ ...
That the expression is unique is evident. For if two such were possible, their

difference would be an identically vanishing expression of the type F = 0, and,
as just proved, none such exist. This proves the theorem.
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4.7.1 Jordan’s lemma.

Proceeding to the proof of the lemma, let ug = —(u1 + usz), supposing that
u1,ug replace the variables in the Theorem I just proved. Then ug,u;,us are
three linear forms and the Theorem I applies with r =3, a+8+~v =n — 2.
Hence any homogeneous expression f in uq, us,us can be expressed in the form

WA+ Uy PB4+ uy T,

or, if we make the interchanges
n—a n—0» n—rvy
A 7 v

ut A+ uff B+ u4C, (148)

in the form

where
Af+pu+v=2n+2. (149)

Again integers \, i, v may always be chosen such that (149) is satisfied and

2 2 2
A2 > vZ=-n.
3n = 3n > 3n
Hence Jordan’s lemma is proved.
A case of three linear forms w; for which u; + us + ug = 0 is furnished by
the identity
(ab)ey + (be)ay, + (ca)b, = 0.

If we express A in (148) in terms of uy,us by means of uy + us + ug = 0, B
in terms of us,us, and C' in terms of ugz,u;, we have the conclusion that any
product of order n of (ab)cy, (bc)a,, (ca)b, can be expressed linearly in terms of

(ab)" ez, (ab)" =" (be)ey ™ 1ama(ab)"_2(b0)202_2ai7 ,

(ab))\(bc n— A )\)
(be)™a”, (be)"*(ca)al™ 1bgc,(bc) 2(ca)?a™ 02, . . .,

(be)(ca) " Hatbl =+ (150)
(ca)"t7, (ca)" (b "y (ca)™2(ab)?by 2 .

(ca)* (ab)™ben ",

where

2 2 2
Azg”aﬂign#zgn

It should be carefully noted for future reference that this monomial of order n in
the three expressions (ab)c,, (bc)a,, (ca)b, is thus expressed linearly in terms of
symbolical products in which there is always present a power of a determinant
of type (ab) equal to or greater than %n The weight of the coefficient of the
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leading term of a covariant is equal to the number of determinant factors of the
type (ab) in its symbolical expression. Therefore (150) shows that if this weight
w of a covariant of f does not exceed the order of the form f all covariants
having leading coeflicients of weight w and degree 3 can be expressed linearly in
terms of those of grade not less than 2w. The same conclusion is easily shown

3
to hold for covariants of arbitrary weight.

4.8 Grade

The process of finding fundamental systems by passing step by step from those
members of one degree to those of the next higher degree, illustrated in Section
3 of this chapter, although capable of being applied successfully to the forms
of the first four orders fails for the higher orders on account of its complexity.
In fact the fundamental system of the quintic contains an invariant of degree
18 and consequently there would be at least eighteen successive steps in the
process. As a proof of the finiteness of the fundamental system of a form of
order n the process fails for the same reason. That is, it is impossible to tell
whether the system will be found after a finite number of steps or not.

In the next chapter we shall develop an analogous process in which it is
proved that the fundamental system will result after a finite number of steps.
This is a process of passing from the members of a given grade to those of the
next higher grade.

4.8.1 Definition.

The highest index of any determinant factor of the type (ab) in a monomial sym-
bolical concomitant is called the grade of that concomitant. Thus (ab)*(ac)?b2ct
is of grade 4. The terms of covariants (84), (87) are each of grade 2.

Whereas there is no upper limit to the degree of a concomitant of a form f
order n, it is evident that the maximum grade is n by the theory of the Aronhold
symbolism. Hence if we can find a method of passing from all members of the
fundamental system of f of one grade to all those of the next higher grade, this
will prove the finiteness of the system, since there would only be a finite number
of steps in this process. This is the plan of the proof of Gordan’s theorem in
the next chapter.

4.8.2 Grade of a covariant.

Theorem. Every covariant of a single form f of odd grade 2XA — 1 can be
transformed into an equivalent covariant of the next higher even grade 2.

We prove, more explicitly, that if a symbolical product contains a factor
(ab)?*~1 it can be transformed so as to be expressed in terms of products each
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containing the factor (ab)**. Let A be the product. Then by the principles of
Section 2A is a term of

((ab)”‘_la;b"'l_”‘bgﬂ_u, ¢)'y
Hence by Theorem III of Section 2.

A= ((ab)Q)\—la7l+1—2>\bn+l—2>\ b)Y + Z K(((ab)g)\_la;z+7lf2)\bg+172/\ (E)'y/
T T 9 x 9 9
) (151)
where 7/ < v and ¢ is a concomitant derived from ¢ by convolution, K being
numerical. Now the symbols are equivalent. Hence

w _ (ab)2>‘71a"+172)‘b"+172)‘ — —(ab)”‘fla"+172)‘b"+172>‘ _ 0
x x x x N
Hence all transvectants on the right-hand side of (151), in which no convolution
in v occurs, vanish. All remaining terms contain the symbolical factor (ab)?*,
which was to be proved.
DEFINITION. A terminology borrowed from the theory of numbers will now

be introduced. A symbolical product, A, which contains the factor (ab)” is said
to be congruent to zero modulo (ab)";

A = 0(mod (ab)").
Thus the covariant (84)
1 2 2 2 2 2
C= g(ab) (ba)“aza, + g(ab) (ac)(ba)azbyoy

gives

C = Z(ab)?(ac) (ba)agby o, (mod(ba)?).

[SSAN )

4.8.3 Covariant congruent to one of its terms

Theorem. Every covariant of f = al) = b = ... which is obtainable as a
covariant of (f, f)?* = g2~ 4% = (ab)**a?—2kp7—2k (Chap. 1I, §4) is congruent
to any definite one of its own terms modulo (ab)?**!.

The form of such a concomitant monomial in the g symbols is

A= (9192)"(9193)" ... 97295 - --

Proceeding by the method of Section 2 of this chapter change g; into y; i.e.
g11 = Y2, 912 = —y1. Then A becomes a form of order 2n—4k in y, viz. ai”"lk =
gan—4k = ... Moreover

)

A= (a2n—4k 2n—4k)2n—4k — ( 2n—4k, (ab)Qkan—kaZL—2k)2n—4k

Y » I 1y @y Y
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by the standard method of transvection. Now this transvectant A is free from y.
Hence there are among its terms expressed in the symbols of f only two types
of adjacent terms, viz. (cf. §2, IT)

(da)(eb)P, (db)(ea)P.

The difference between A and one of its terms can therefore be arranged as
a succession of differences of adjacent terms of these two types and since P
involves (ab)?* any such difference is congruent to zero modulo (ab)?**!, which
proves the theorem.

4.8.4 Representation of a covariant of a covariant.
Theorem. If n = 4k, any covariant of the covariant

2n—4ak __ 2k n—2kin—2k
9z - (ab) Ay bz

is expressible in the form
Z Cops1 + (ab) 2 (bc) % (ca) 2T, (152)

where Ca41 represents a covariant of grade 2k + 1 at least, the second term
being absent (T'=0) if n is odd.

Every covariant of g2"~** of a stated degree is expressible as a linear com-
bination of transvectants of g2"~** with covariants of the next lower degree (cf.
§2, III). Hence the theorem will be true if proved for T = (g2n—4k g2n—4k)o
the covariants of second degree of this form. By the foregoing theorem T is
congruent to any one of its own terms mod (ab)?**!1. Hence if we prove the
present theorem for a stated term of T, the conclusion will follow. In order to
select a term from T we first find T by the standard transvection process (cf.

Chap. III, §2). We have after writing s = n — 2k for brevity, and a$b?% = a2*

x

T = (ab)?* (cd)?* Z (t)(gz)_t)c;td;"H (ca)t(da)?ta2t 0. (153)
t=0 o

Now the terms of this expression involving a may be obtained by polarizing
a2 t times with respect to y, o —t times with respect to z, and changing y into
c and z into d. Performing these operations upon a;b; we obtain for T,

T=23.2 i Kruo(ab)?* (cd)** (ac)* (ad)® (be)' =" (bd) "t~

t=0 u=0v=0
Xah Ut g (154)

where Ky, is numerical. Evidently o is even.
We select as a representative term the one for which t = o, u =v =0.
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This is
¢ — (ab)2k(bc)a(Cd)2kan72kb272kfacn72kfad;172k.

x x

Assume n = 4k. Then by Section 6,

¢ _ (ab)Zk(bc)a(Ca)2kag—4kbg—2k—acg—2k—a

can be expressed in terms of covariants whose grade is greater than 2k unless
o =2k = 5. Also in the latter case v is the invariant

¥ = (ab)¥ (be)’? (ca)?.

It will be seen at once that n must then be divisible by 4. Next we transform ¢
by (cd)a, = (ad)c, — (ac)d,. The result is

2k

2 . . ] ]

¢/ _ § : < f)( b)Qk(bC)a(CG)Z(ad)Zk_lag_4kb2_2k_acg_o_zdg_2k+z.
=0

(I) Now if o > k, we have from Section 6 that ¢ is of grade > % - 3k, i.e.
> 2k, or else contains (ab)? (bc)? (ca)? i.e.

¢ = Copsr+ (ab)? (be)? (ca) 3 T. (155)

(IT) Suppose then oleggk. Then in ¢’, since ¢ = 2k has been treated under
1) above, we have either

(a)i 2 k,

or
)2k — i > k.

In case (a) (155) follows directly from Section 6. In case (b) the same con-
clusion follows from the argument in (I). Hence the theorem is proved.
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Chapter 5

GORDAN’S THEOREM

We are now in position to prove the celebrated theorem that every concomitant
of a binary form f is expressible as a rational and integral algebraical function of
a definite finite set of the concomitants of f. Gordan was the first to accomplish
the proof of this theorem (1868), and for this reason it has been called Gordan’s
theorem. Unsuccessful attempts to prove the theorem had been made before
Gordan’s proof was announced.

The sequence of introductory lemmas, which are proved below, is that which
was first given by Gordan in his third proof (cf. Vorlesungen uber Invarianten-
theorie, Vol. 2, part 3). ' The proof of the theorem itself is somewhat simpler
than the original proof. This simplification has been accomplished by the the-
orems resulting from Jordan’s lemma, given in the preceding chapter.

5.1 Proof of the Theorem

We proceed to the proof of a series of introductory lemmas followed by the
finiteness proof.

5.1.1 Lemma

Lemma 3. If (A) : Ay, As, ..., A is a system of binary forms of respective
orders ay,as,...,ax, and (B) : By, Ba,..., By, a system of respective orders by
b1,b2,...,b;, and if

¢ =ASTAS2 . A% o =B'By ... B

denote any two products for which the a’s and the B’s are all positive integers
(or zero), then the number of transvectants of the type of

T=(¢,9)

which do not contain reducible terms is finite.

LCf. Grace and Young; Algebra of Invariants (1903).
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To prove this, assume that any term of 7 contains p symbols of the forms
A not in second order determinant combinations with a symbol of the B forms,
and o symbols of the B’s not in combination with a symbol of the A’s. Then
evidently we have for the total number of symbols in this term, from (A) and
(B) respectively,

a1 + agae + ...+ agag = p+ 7,
b1B1+ b2+ ...+ b8 =047 (156)

To each positive integral solution of the equations (156), considered as equa-
tions in the quantities «, 3, p, o, j, will correspond definite products¢, ) and a
definite index j, and hence a definite transvectant 7. But as was proved (Chap.
IV, Section 3, III), if the solution corresponding to (¢,)7 is the sum of those
corresponding to (¢y,11)7t and (¢2,12)72, then 7 certainly contains reducible
terms. In other words transvectants corresponding to reducible solutions con-
tain reducible terms. But the number of irreducible solutions of (156) is finite
(Chap. IV, Section 5, II). Hence the number of transvectants of the type 7
which do not contain reducible terms is finite. A method of finding the irre-
ducible transvectants was given in Section 3, III of the preceding chapter.

Definitions.

A system of forms (A) is said to be complete when any expression derived by
convolution from a product ¢ of powers of the forms (A) is itself a rational
integral function of the forms (A).

A system (A) will be called relatively complete for the modulus G consisting
of the product of a number of symbolical determinants when any expression
derived by convolution from a product ¢ is a rational integral function of the
forms (A) together with terms containing G as a factor.

As an illustration of these definitions we may observe that

f=a=- A= (ab)*r,b,,Q = (ab)*(ca)b,c2,
R = (ab)*(cd)?(ac)(bd)

is a complete system. For it is the fundamental system of a cubic f, and hence
any expression derived by convolution from a product of powers of these four
concomitants is a rational integral function of f, A, @, R.

Again f itself forms a system relatively complete modulo (ab)?.

Definition.

A system (A) is said to be relatively complete for the set of moduli G1,Ga, -
when any expression derived from a product of powers of A forms by convolution
is a rational integral function of A forms together with terms containing at least
one of the moduli G1,Gs, - as a factor.
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In illustration it can be proved (cf. Chap. IV, §7, IV) that in the complete
system derived for the quartic

H = (ab)*a>b?

rrx)

any expression derived by convolution from a power of H is rational and integral
in H and

G1 = (ab)*, Gy = (bc)?(ca)?(ab)?.

Thus H is a system which is relatively complete with regard to the two moduli
G1 = (ab)*, Gy = (bc)?(ca)?(ab)?.

Evidently a complete system is also relatively complete for any set of moduli.
We call such a system absolutely complete.

Definitions.

The system (C) derived by transvection from the systems (A), (B) contains an
infinite number of forms. Nevertheless (C) is called a finite system when all
its members are expressible as rational integral algebraic functions of a finite
number of them.

The system (C) is called relatively finite with respect to a set of moduli
G1,Ga, ... when every form of (C) is expressible as a rational integral algebraic
function of a finite number of the forms (C) together with terms containing at
least one of the moduli G1,Gs, ... as a factor.

The system of all concomitants of a cubic f is absolutely finite, since every
concomitant is expressible rationally and integrally in terms of f, A, @, R.

Lemma 4. If the systems (A), (B) are both finite and complete, then the system
(C) derived from them by transvection is finite and complete.

We first prove that the system (C) is finite. Let us first arrange the transvec-
tants

T=(¢,9)

in an ordered array
T1,T2y 3 Try " 7(157)

the process of ordering being defined as follows:

(a) Transvectants are arranged in order of ascending total degree of the
product ¢ in the coefficients of the forms in the two systems (A), (B).

(b) Transvectants for which the total degree is the same are arranged in order
of ascending indices j; and further than this the order is immaterial.

Now let ¢,t' be any two terms of 7. Then

(t—t") =%(6,0) (j' < ),
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where ¢ is a form derived by convolution from ¢. But by hypothesis (A), (B)
are complete systems. Hence ¢, are rational and integral in the forms A, B
respectively,

¢ = F(A),v = G(B).

Therefore (¢,1)7 can be expressed in terms of transvectants of the type 7 (i.e.
belonging to (C')) of index less than j and hence coming before 7 in the ordered
array (157). But if we assume that the forms of (C) derived from all transvec-
tants before 7 can be expressed rationally and integrally in terms of a finite
number of the forms of (C),

C1,Co,y...,C,,
then all C’s up to and including those derived from

7= (¢, 9)
can be expressed in terms of
Cy,Cs, ..., Cht.

But if 7 contains a reducible term ¢ = t1t5 then since 1, to must both arise from
transvectants before 7 in the ordered array no term ¢ need be added and all C’s
up to and including those derived from 7 are expressible in terms of

C1,Cy,...,Ch.

Thus in building by this procedure a system of C’s in terms of which all forms
of (C) can be expressed we need to add a new member only when we come to
a transvectant in (157) which contains no reducible term. But the number of
such transvectants in (C') is finite. Hence, a finite number of C’s can be chosen
such that every other is a rational function of these.

The proof that (C) is finite is now finished, but we may note that a set of
C’s in terms of which all others are expressible may be chosen in various ways,
since t in the above is any term of 7. Moreover since the difference between any
two terms of 7 is expressible in terms of transvectants before 7 in the ordered
array we may choose instead of a single term ¢ of an irreducible 7 = (¢, )7,
an aggregate of any number of terms or even the whole transvectant and it
will remain true that every form of (C) can be expressed as a rational integral
algebraic function of the members of the finite system so chosen.

We next prove that the finite system constructed as above is complete.

Let

017027"'a07'

be the finite system. Then we are to prove that any expression X derived by
convolution from

X=Crcy...cr
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is a rational integral algebraic function of C1,...,C,. Assume that X contains
p second-order determinant factors in which a symbol from an (A) form is in
combination with a symbol belonging to a (B) form.

Then X is a term of a transvectant (¢,)”, where ¢ contains symbols from
system (A) only, and 1) contains symbols from (B) only. Then ¢ must be
derivable by convolution from a product ¢ of the A’s and 1 from a product v
of B forms. Moreover

X = (0.9 + > (0.9 (0 <p),

and (Z,iz having been derived by convolution from ¢, ), respectively, are ulti-
mately so derivable from ¢, . But

¢=F(4), ¢=0G(B)
and so X is expressed as an aggregate of transvectants of the type of

T=(,0)".
But it was proved above that every term of 7 is a rational integral function of
Ci,...,C,.

Hence X is such a function; which was to be proved.

5.1.2 Lemma

Lemma 5. If a finite system of forms (A), all the members of which are covari-
ants of a binary form f, includes f and is relatively complete for the modulus
G'; and if, in addition, a finite system (B) is relatively complete for the mod-
ulus G and includes one form By whose only determinantal factors are those
constituting G', then the system (C) derived by transvection from (A) and (B)
is relatively finite and complete for the modulus G.

In order to illustrate this lemma before proving it let (A) consist of one form
f=a=--- and (B) of two forms

A = (ab)?azbs, R = (ab)?(ac)(bd)(cd)?.

Then (A) is relatively complete for the modulus G’ = (ab)?. Also B is absolutely
complete, for it is the fundamental system of the Hessian of f. Hence the lemma
states that (C) should be absolutely complete. This is obvious. For (C') consists
of the fundamental system of the cubic,

f7A7Q7R7

and other covariants of f.
We divide the proof of the lemma into two parts.
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Part 1. First, we prove the fact that if P be an expression derived by convo-
lution from a power of f, then any term, t, of ¢ = (P,4)" can be expressed as
an aggregate of transvectants of the type

T=(6,9),

in which the degree of ¢ is at most equal to the degree of P. Here ¢ and 1) are
products of powers of forms (A), (B) respectively, and by the statement of the
lemma (A) contains only covariants of f and includes f itself.

This fact is evident when the degree of P is zero. To establish an inductive
proof we assume it true when the degree of P is < r and note that

t=(Py) + 2(P,9)" (i <i),
and, inasmuch as P and P are derived by convolution from a power of f,

P=F(A)+GY = F(A4) (modG"),
P=F(A)+GY =F'(A) (mod Q).

Also
Y = ®(B) + GZ = ®(B)( mod G).

Hence t contains terms of three types (a), (b), (¢).

(a) Transvectants of the type (F(A), ¢(B))*, the degree of F'(A) being r, the
degree of P.

(b) Transvectants of type (G'Y,9)*, G'Y being of the same degree as P.

(¢) Terms congruent to zero modulo G.

Now for (a) the fact to be proved is obvious. For (b), we note that G'Y can
be derived by convolution from B; f*, where s < r. Hence any term of (G'Y,v)*
can be derived by convolution from Bj f®i and is expressible in the form

> (P, Biv),

where P’ is derived by convolution from f* and is of degree < r. But by
hypothesis every term in these latter transvectants is expressible as an aggregate

= Z((b, ¥) (modulo G),

inasmuch as
B1vY = ®(B)(modulo G).

But in this (¢,1)" ¢ is of degree < s < r. Hence

t= (¢,) (mod G),

and the desired inductive proof is established.
As a corollary to the fact just proved we note that if P contain the factor
G', then any term in

(P,v)’
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can be expressed in the form

> (¢, 0) (158)

where the degree of ¢ is less than that of P.

Part 2. We now present the second part of the proof of the original lemma,
and first to prove that (C) is relatively finite modulo G.

We postulate that the transvectants of the system (C) are arranged in an
ordered array defined as follows by (a), (b), (¢).

(a) The transvectants of (C) shall be arranged in order of ascending degree
of ¢1p, assuming the transvectants to be of the type 7 = (¢,v)7.

(b) Those for which the degree of ¢ is the same shall be arranged in order
of ascending degree of ¢.

(¢) Transvectants for which both degrees are the same shall be arranged in
order of ascending index j; and further than this the ordering is immaterial.

Let ¢, t' be any two terms of 7. Then

t'—t=3(6,4) (' <j).
Also by the hypotheses of the lemma
¢=F(A)+GY, ¢ = ®(B) +GZ.

Hence
t' —t = N(F(A),®(B)) + 2(G'Y, ®(B))’ (modG).

Now transvectants of the type (F(A),®(B)) belong before 7 in the ordered
array since j/ < j and the degree of F(A) is the same as that of ¢. Again
(G"Y,®(B))? can by the above corollary (158) be expressed in the form

PR
where the degree of ¢’ is less than that of G'Y and hence less than that of ¢.
Consequently, ¢’ — ¢ can be written

' —t=""(¢" ") + Y (¢,¢') (mod G),

where the degree of ¢” is the same as that of ¢ and where j'/Itj, and where
the degree of ¢ is less than that of ¢. Therefore if all terms of transvectants
coming before

T=(¢,0)

in the ordered array are expressible rationally and integrally in terms of
C1,Cs,...,Cq,

except for terms congruent to zero modulo G, then all terms of transvectants
up to and including T can be so expressed in terms of

C17C27"'7Cq7t5
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where ¢t is any term of 7. As in the proof of lemma 2, if 7 contains a reducible
term t = t1t9, t does not need to be added to

Ch,Cs,...,Cq,

since then ¢, to are terms of transvectants coming before /tau in the ordered
array. Hence, in building up the system of C’s in terms of which all forms of
(C) are rationally expressible modulo G, by proceeding from one transvectant
T to the next in the array, we add a new member to the system only when we
come to a transvectant containing no reducible term. But the number of such
irreducible transvectants in (C) is finite. Hence (C') is relatively finite modulo G.
Note that C, ..., C, may be chosen by selecting one term from each irreducible
transvectant in (C).

Finally we prove that (C) is relatively complete modulo G. Any term X
derived by convolution from

X =07'Cy...C),

is a term of a transvectant (¢,1))?, where, as previously, ¢ is derived by convo-
lution from a product of A forms and ¢ from a product of B forms. Then

X =600 +%0.9) 0 <p
That is, X is an aggregate of transvectants (¢,v)?, ¢ = P can be derived by
convolution from a power of f, and
¥ = ®(B) (mod G).
Thus,
X =) (P,®(B))’ (mod G)
=) _(P¢)? (mod G)

= (¢,¥)" (mod G)

where ¢ is of degree not greater than the degree of P, by the first part of the
proof. But all transvectants of the last type are expressible as rational integral
functions of a finite number of C’s modulo G. Hence the system (C') is relatively
complete, as well as finite, modulo G.

5.1.3 Corollary

Corollary 2. If the system (B) is absolutely complete then (C) is absolutely
complete.

Corollary 3. If (B) is relatively complete for two moduli Gy, G and contains
a form whose only determinantal factors are those constituting G', then the
system (C') is relatively complete for the two moduli G1, Gs.
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5.1.4 Theorem

Theorem. The system of all concomitants of a binary form f =al = ... of
order n is finite.

The proof of this theorem can now be readily accomplished in view of the
theorems in Paragraphs III, IV of Chapter IV, Section 7, and lemma 3 just
proved.

The system consisting of f itself is relatively complete modulo (ab)?. It
is a finite system also, and hence it satisfies the hypotheses regarding (A) in
lemma 3. This system (A) = f may then be used to start an inductive proof
concerning systems satisfying lemma 3. That is we assume that we know a
finite system Ajp_; which consists entirely of covariants of f, which includes
f, and which is relatively complete modulo (ab)?*. Since every covariant of f
can be derived from f by convolution it is a rational integral function of the
forms in Aj_; except for terms involving the factor (ab)?*. We then seek to
construct a subsidiary finite system Bj_; which includes one form B; whose
only determinant factors are (ab)?* = G’, and which is relatively complete
modulo (ab)?¥*2 = G. Then the system derived by transvection from A;_; and
By_1 will be relatively finite and complete modulo (ab)?**2. That is, it will
be the system Aj. This procedure, then, will establish completely an inductive
process by which we construct the system concomitants of f relatively finite
and complete modulo (ab)?**2 from the set finite and complete modulo (ab)?*,
and since the maximum grade is n we obtain by a finite number of steps an
absolutely finite and complete system of concomitants of f. Thus the finiteness
of the system of all concomitants of f will be proved.

Now in view of the theorems quoted above the subsidiary system Bj_; is
easily constructed, and is comparatively simple. We select for the form B; of
the lemma

By = (ab)**a}~?*b}7%F = hy,.

Next we set apart for separate consideration the case (¢) n = 4k. The remaining
cases are (a) n > 4k, and (b) n < 4k.

(a) By Theorem IV of Section 7 in the preceding chapter if n > 4k any form
derived by convolution from a power of hy is of grade 2k 4+ 1 at least and hence
can be transformed so as to be of grade 2k + 2 (Chap. IV, §7, II). Hence hy,
itself forms a system which is relatively finite and complete modulo (ab)2¥+2
and is the system Bj_1 required.

(b) If n < 4k then hy, is of order less than n. But in the problem of con-
structing fundamental systems we may proceed from the forms of lower degree
to those of the higher. Hence we may assume that the fundamental system of
any form of order < n is known. Hence in this case (b) we know the fundamen-
tal system of hy. But by III of Chapter IV, Section 7 any concomitant of hy is
congruent to any one of this concomitant’s own terms modulo (ab)?**1. Hence
if we select one term from each member of the known fundamental system of hy
we have a system which is relatively finite and complete modulo (ab)?**2; that
is, the required system Bj_1.
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(c) Next consider the case n = 4k. Here by Section 7, IV of the preceding
chapter the system Bj_1 = hy is relatively finite and complete with respect to
two moduli

Gl _ (ab)2k+2,G2 _ (ab)Zlc(bc)21~c(cd)2k7

and G5 is an invariant of f. Thus by corollary 2 of lemma 3 the system, as Cy
derived by transvection from Ax_1 and By_; is relatively finite and complete
with respect to the two moduli G, Gy. Hence, if C) represents any form of the
system C}, obtained from a form of Cj by convolution,

ék = Fl(Ck) + G2P1 (mod(ab)2k+2)‘

Here P, is a covariant of degree less than the degree of C). Hence P, may be
derived by convolution from f, and so

P = Fg(ck) + Gng(mod(ab)2k+2),

and then P; is a covariant of degree less than the degree of P1. By repetitions
of this process we finally express Cj as a polynomial in

Gy = (ab)%(bc)%(ca)zk,

whose coefficients are all covariants of f belonging to Cj, together with terms
containing G; = (ab)?**2 as a factor, i.e.

ék = F1(0k> + GQFQ(Ck) + G%Fg(ck) + -+ GEFT(Ck)(mOdGl).

Hence if we adjoin G2 to the system C} we have a system Ay which is relatively
finite and complete modulo (ab)2¥+2.

Therefore in all cases (a), (b), (¢) we have been able to construct a system Ay,
relatively finite and complete modulo (ab)?*2 from the system A;_; relatively
finite and complete modulo (ab)?*. Since Ay evidently consists of f itself the
required induction is complete.

Finally, consider what the circumstances will be when we come to the end
of the sequence of moduli

(ab)?, (ab)*, (ab)®, -+ .

If n is even, n = 2g, the system A,_; is relatively finite and complete
modulo (ab)?* = (ab)™. The system B,_; consists of the invariant (ab)" and
hence is absolutely finite and complete. Hence, since A, is absolutely finite and
complete, the irreducible transvectants of A, constitute the fundamental system
of f. Moreover A, consists of A,_; and the invariant (ab)”.

If n is odd, n = 2¢g 4+ 1, then A,_; contains f and is relatively finite and
complete modulo (ab)??. The system.B,_; is here the fundamental system of
the quadratic (ab)*9a,b, e.g.

B,_1 = {(ab)*9a,b,, (ab)*?(ac)(bd)(cd)**}.
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This system is relatively finite and complete modulo (ab)?9*!. But this modulus

is zero since the symbols are equivalent. Hence B,_; is absolutely finite and

complete and by lemma 34, will be absolutely finite and complete. Then the

set of irreducible transvectants in A, is the fundamental system of f.
Gordan’s theorem has now been proved.

5.2 Fundamental Systems of the Cubic and
Quartic by the Gordan Process

It will now be clear that the proof in the preceding section not only establishes
the existence of a finite fundamental system of concomitants of a binary form
f of order n, but it also provides an inductive procedure by which this system
may be constructed.

5.2.1 System of the cubic.

For illustration let n = 3,
foal=bi=.
The system Ag is f itself. The system By is the fundamental system of the

single form
hy = (ab)*azby,

since hy is of order less than 3. That is,
By = {(ab)*a,b,, D}

where D is the discriminant of hy. Then A; is the system of transvectants of
the type of
T = (fa,hf,D”*)j.
But By is absolutely finite and complete. Hence A; is also.
Now D belongs to this system, being given by « = g = j = 0,y = 1. If
7 > 0 then 7 is reducible unless v = 0, since D is an invariant. Hence, we have
to consider which transvectants

T=(fh})

are irreducible. But in Chapter IV, Section 3 II, we have proved that the
only one of these transvectants which is irreducible is Q = (f, h1). Hence, the
irreducible members of A; consist of

Al = {fahvavD}v
or in the notation previously introduced,
Al = {f7 A? Q7 R}

But By is absolutely complete and finite. Hence these irreducible forms of A;
constitute the fundamental system of f.
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5.2.2 System of the quartic.
Let f =at =b%=-... Then Ay = {f}. Here By is the single form

hy = (ab)*a?b?

fo g

and By is relatively finite and complete (modd(ab)*, (ab)?(bc)?(ca)?). The sys-
tem C7 of transvectants
T =(f%, hf)j
is relatively finite and complete (modd(ab)?, (ab)?(bc)?(ca)?). In 7 if j > 1, 7
contains a term with the factor (ab)?(ac)? which is congruent to zero with respect
to the two moduli. Hence j = 1, and by the theory of reducible transvectants
(Chap. IV, Section 3, III)
da —4 < j <Ada,

or = 1,8 = 1. The members of C; which are irreducible with respect to the
two moduli are therefore

fahla (fa hl)

Then
Av = {f, h1, (f, 1), J = (ab)?(be)?(ca)®}.

Next B; consists of i = (ab)* and is absolutely complete. Hence, writing h; =
H,(f, hy) =T, the fundamental system of f is

£ H,T,i,J.
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Chapter 6

FUNDAMENTAL
SYSTEMS

In this chapter we shall develop, by the methods and processes of preceding
chapters, typical fundamental systems of concomitants of single forms and of
sets of forms.

6.1 Simultaneous Systems

In Chapter V, Section 1, II, it has been proved that if a system of forms (A)
is both finite and complete, and a second system (B) is also both finite and
complete, then the system (5) derived from (A) and (A) by transvection is finite
and complete. In view of Gordan’s theorem this proves that the simultaneous
system of any two binary quantics f,g is finite, and that this simultaneous
system may be found from the respective systems of f and g by transvection.
Similarly for a set of n quantics.

6.1.1 Linear form and quadratic.

The complete system of two linear forms consists of the two forms themselves
and their eliminant. For a linear form [ = [, and a quadratic f, we have

(A) =1,(B)={f.D}.
Then S consists of the transvectants
S={(f*D%1")°}.

Since D is an invariant S is reducible unless 8 = 0. Also § < ~, and unless
§ =1, (f*,17)? is reducible by means of the product

(Fo00)°(1, 700
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Hence v = 0. Again, by
(SR S K T
S is reducible if § > 2. Hence the fundamental system of f and [ is
S={f, DL, (f.1),(f,1%)}.
When expressed in terms of the actual coefficients these forms are
l:a0I1+a11‘2:lx:l;:...,
f= bol’% + 2b1x17T0 + bg(I}% = ai = bi =...
D = 2(boby = b3 = (ab)?,
(f,l) e (b0a1 - blao)l‘l + (b1a1 - bg(lo)xg e (al)ax,
(f,1%)% = boai — 2bragar + baag = (al)(al’).

6.1.2 Linear form and cubic.

Ifl =1, and f =a2 =03 = ..., then (cf. Table I),

(4) ={1};(B) = {/,A,Q, R},
and
S = (f*A°Q R 1°)".
Since R is an invariant € = 0 for an irreducible transvectant. Also n = § as in
(I). If &« # 0 then, by the product

(£ P (FotafQr10m2)

S is reducible unless 6 < 3, and if § < 3 S is reducible by

(£’ (F1AQY, 1)
unless =+ =0, @ = 1. Thus the fundamental system of f and [ is

S = {LAQRL(£1),(f,%)% (£,
(8,0, (A, 1)%(@,1),(Q.1%)*,(Q. 1°)°}.
6.1.3 Two quadratics.
Let f=a2=a?;g=02=b2=.... Then
(A)={f.D1}, (B)={g, D2}, §=(f*D{.g"D3)"

Here § =9 =0. Also

20 > e>2a—1,

27 26227_17
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and consistent with these we have the fundamental system

S:{fagvD1;D27(fvg)v(fvg)2}‘ (61)

Written explicitly, these quantities are

2 2.2 2 2
f=aox] + 2012120 + a525 =a; =a; =+,

g =boxt +2bx139 +boxd =02 =b2=-..,
Dy = 2(apas — a}) = (ad')?,
Dy = 2(bgby — b2) = (bb')?,
J=(f9)
= (agb1 — albo):vf + (apby — azbo)x122 + (a1be — agbl)xg = (ab)ayby,
h = (f,9)* = agby — 2a1b1 + asby = (ab)>.

6.1.4 Quadratic and cubic.
12 __

Consider next the simultaneous system of f = a2 = a2 =--- g =03 = b2 =
-+-. In this case

(A) ={f,D},(B) = {g,A,Q, R}, S = (f*D”, g"A*Q°R%)".

In order that S may be irreducible, 5 = d = 0. Then in case v > 2 and b # 0,
S = (f*, g*APQ°)" is reducible by means of the product

(f; A2 (fo 1 g" AP Qe 2,
Hence only three types of transvectants can be irreducible;
(Fs ), (F, A, (F*,9°Q°)".

The first two are, in fact irreducible. Also in the third type if we take ¢ = 0, the
irreducible transvectants given by (f<, g*)? will be those determined in Chapter
IV, Section 3, III, and are

£r9,(£9), (£,9)% (£2,9)%, (£2, 4)°.

If ¢ > 1, we may substitute in our transvectant (f<, g*Q°)” the syzygy
1
Q* = *i(AS + Rg?);

and hence all transvectants with ¢ > 1 are reducible. Taking a = 0,c = 1 we
note that (f, Q) is reducible because it is the Jacobian of a Jacobian. Then the
only irreducible cases are

(£, Q)% (% Q).
Finally if ¢ = 1, a # 0, the only irreducible transvectant is

(f*,9Q)°.

Therefore the fundamental system of a binary cubic and a binary quadratic
consists of the fifteen concomitants given in Table III below.
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TABLE III

ORDER

DEGREE 0 1 2 3
1 / g
2 D (f,9)° A | (f.9)
3 (LA [ (e [(HA) ] @
4 R (f,Q)?
) (f%,9°)° | (f%,Q)°
7 (f%,9Q)°

6.2 System of the Quintic

The most powerful process known for the discovery of a fundamental system
of a single binary form is the process of Gordan developed in the preceding
chapter. In order to summarize briefly the essential steps in this process let
the form be f. Construct, then, the system Ag which is finite and complete
modulo (ab)?, i.e. a system of forms which are not expressible in terms of forms
congruent to zero modulo (ab)?. Next construct Aj, the corresponding system
modulo (ab)?, and continue this step by step process until the system which is
finite and complete modulo (ab)™ is reached. In order to construct the system
Ay which is complete modulo (ab)?**2 from Ay_i, complete modulo (ab)?*, a
subsidiary *system By_1 is introduced. The system Bj_1 consists of covariants
of ¢ = (ab)**a?~2kb2 2% 1f 2n — 4k < n then By_; consists of the fundamental
system of ¢. If 2n — 4k > n, Bi_1 consists of ¢ itself, and if 2n — 4k =n, Br_1
consists of ¢ and the invariant (ab)? (bc) 2 (ca)?. The system derived from A;_1,
Bj,_1 by transvection is the system Ay.

6.2.1 The quintic.

Suppose that n = 5; f = a® = b2 = ---. Here, the system Ay is f itself. The
system By consists of the one form H = (ab)?a3b3. Hence the system A; is the
transvectant system given by

(f*, H7).

By the standard method of transvection, if v > 2 this transvectant always
contains a term of grade 3 and hence, by the theorem in Chapter IV, it may
be transformed so that it contains a series of terms congruent to zero modulo
(ab)*, and so it contains reducible terms with respect to this modulus. Moreover
(f, H)? is reducible for forms of all orders as was proved by Gordan’s series in
Section 1 of Chapter IV. Thus A; consists of f, H, (f,H) =T.

Proceeding to construct B; we note that i = (ab)*a,b, is of order < 5.
Hence Bj consists of its fundamental system:

Bl = {ZaD}7
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where D is the discriminant of ¢. Hence A, which is here the fundamental
system of f is the transvectant system given by

¢ = (f*H T, D7)"

The values « = 8 =7 =90 =19 =0, =1 give D. Since D is an invariant ¢ is
reducible if n # 0 and € # 0. Hence ¢ = 0.
If B > 1, ¢ is reducible by means of such products as

(f*HT?, i) (HP~H i)
Hence
(0)B=0
(#i)a =0,7y=0,8=1.

By Chapter IV, Section 4, IV,

T = *%{(f, F?h* = 2(f,H)*fH + (H,H) ?}.
Hence 1
T? = —§H3(mod(ab)4).

But if v > 1, the substitution of this in ¢ raises 8 above 1 and hence gives a
reducible transvectant. Thus v =0 or 1 (of. Chap. V (158)).
Thus we need to consider in detail the following sets only:

(Ja=1lor2,8=0,7=0,
(i)a=0,8 =0,y =1,
(iii)a =1,5 =0, = 1,
(w)a=0,=1,7v=0.

In (i) we are concerned with (f<,i%)7. By the method of Section 3, Chapter
v,

25 —1 <y < 25,
ba —4 <y £ ba,

and consistent with this pair of relations we have

i £ (F0), (F,2)%, (F,2)%, (£, )% (f, ),
(f2,0%) (F2,0)7, (F2,4)°%, (f2,4%)°, (£2,09)"°.
Of these, (f2,i%)% contains reducible terms from the product
(i) (D)%,
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and in similar fashion all these transvectants are reducible except the following
eight:
Fois (F,0), (£, (F,4%)%, (F,82)", (F,8°)%, (f22°)1.

In (ii) we have (77,4°). But T = —(ab)?(bc)a3b?ct, and (T),i) contains the
term t = —(ab)?(be)(bi)ab,ct. Again
1
(be) (bi)eyi, = 5[(170)215 + (bi)%c2 — (ci)?v2].

Hence ¢ involves a term having the factor f. The analysis of the remaining
cases proceeds in precisely the same way as in Cases (i), (ii). In Case (ii) the
irreducible transvectants prove to be

(T,4), (T, i%)*,(T,*)%, (T,i*)®, (T, i%)°.

Case (iii) gives but one irreducible case, viz. (f7T,i7).
In Case (iv) we have

(H,4),(H,4)?, (H,i%)3, (H,i*)*, (H,i%)°, (H,i)°.

Table IV contains the complete summary. The fundamental system of f consists
of the 23 forms given in this table.

TABLE IV
ORDER
DEGREE 0 1 2 3 4 5 6
1 f
2 ) H
3 (i, )? (4, f)
4 D (i, H)? (i, H)
5 @, N (G (i,T)°
6 (%, H)* (%, H)3
7 (@*, f)° (% T)*
8| (% H) (i, H)
9 (i3,T)8
11 (i4,T)8
12 (2'5, f2)10
13 (iS,T)g
18 (i7,fT)14

6.3 Resultants in Aronhold’s Symbols

In order to express the concomitants derived in the preceding section in sym-
bolical form the standard method of transvection may be employed and gives
readily any concomitant of that section in explicit symbolical form. We leave
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details of this kind to be carried out by the reader. However, in this section
we give a derivation, due to Clebsch, which gives the symbolical representation
of the resultant of two given forms. In view of the importance of resultants in
invariant theories, this derivation is of fundamental consequence.

6.3.1 Resultant of a linear form and an n-ic.

The resultant of two binary forms equated to zero is a necessary and sufficient
condition for a common factor.
Let
f=ay; ¢ =0y =121 = aaxe = 0.
Then x1 : x2 = —ag : ;. Substitution in f evidently gives the resultant, and
in the form

R = (aa)"

6.3.2 Resultant of a quadratic and an n-ic.

Let

¢ = ai = Pzqzx-
The resultant R = 0 is evidently the condition that f have either p, or g, as a
factor. Hence, by I,

R = (ap)"(bq)"
Let us express R entirely in terms of a,b,---, and «, 8, -+ symbols.
We have, since a, b are equivalent symbols,

R = 3 {(ap)" (ba)" + (aq)" (bp)"}.

Let (ap)(bq) = p, (aq)(bp) = v, so that

M’I’L + V’!L
R="——
2
Theorem. If n is even, R = % 1s rationally and integrally expressible in

terms of p> = (u —v)? and 0 = pv. If n is odd, (u+ v) 'R is so expressible.
In proof write
Sk _ :U/k + (_1)n—kyk.
Then
R==5,.
Moreover it follows directly that
Sn = (,u - V)SnJrl + /U/Sn727
Sn—1= (= v)Sp_2 + pvSy_3,



Also for n even
SIZM_V7SOZ27

and for n odd
S1 =M+V,So =0.

Now let

Q:SQ+253+ZQS4+"'
= pSt +JSO+szQ+z051+22p53+22052+...

Then we have

Q= p(S1 + 29Q) + o(So + 251 + 22Q),
and
(p+02)S1+ S

0=
1—pz+ 022

Then S, is the coefficient of 2”2 in the expansion of Q. Now

1 1 072 o224

_ + R
1—pz—o02? 1—,02'Jr (1—p2)2  (1—p2)3

S SRS I QU S
+(142p2 + 3p2% +4p%23 + - )o2?
2.3 3.4,, 45

1 3.3\ .24
MR TR v T we 1A L

:K0+K12+K222+K323+"',

where

Ko = 1,Ky=p*+0,Ky=p*+3p°c+0%

Ki = p,Ks=p"+2p0, K5 =p° +4p°c + 3po?,

h—2)(h—3
Kh — ph+(h—1)0'ph_2+( 1)(2 )O_th—4
(h=3)(h—4)(h=5) 5 4
+ 1.2.3 o’p +

But

Q= {(pS1+0Sp) + 2081 }H{Ko + K12+ Ko2* +---}.

In this, taking the coefficient of 2" ~2,
2R =5, = (pS1 + O'SQ)Kn_Q +0S1K,,_3.

But,
pKn 2 +0K, 3=K;, 1.
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Hence,
1
R + 5{51Kn71 + O'S()Kn,Q}.

Hence according as n is even or odd we have

_o  n(n—23) 4 n(n—4)(n-25) _
2 _ n n—2 2 n—4 3 n—6
R O T N T T S A S
-3 —4
R = (it 4 (-2t IO s
(n—4)(n—-5Mn—-6) 3, 7
1. 5.3 op" T

which was to be proved.
Now if we write

¢:pwqg::aizﬁ;3:"'v

we have
piq1 = a1, p1g2 + p2q1 = 201Q2,p2ge = aj.
Then
p+v = (ap)(bg) + (aq)(bp)
= (a1p2 — azp1)(bigz — b2g1) + (@192 — a2q1)(b1p2 — bap1)
= 2[&11)1&% — Cl1b20¢1042 - agbloél()ég + agbgaﬂ
2(ac)(bav),
pv = o = (ap)(aq)(bp)(bq)
= Pala - Poqs = (a)*(ab)?,
(n—v)?* = p* = {(ap)(bg) — (aq)(bp)}* = (ab)*(pq)®
= —2(ab)?*(aB)? = —2(ab)*D.
Let the symbols of ¢ be o/, a”,--- ;8,8",--+ ,v,--+. Then we can write for the

general term of R,
pn—Qko_k — (’u _ V)n—Qk(My)k _ (_2)g—kDL2‘—k(ab)n—2k
x (aa/)?(b8')*(ac” ) (b5")? - - - (aa™)? (b5 *)?
= (72)%7kD%7kAk.

Evidently Ay is itself an invariant. When we substitute this in 2R above we
write the term for which k£ = %n last. This term factors. For if

B = (aa/)?*(ac/)? - - - (aa(3))?
= (b8')*(bB")? -+ (bB'9)?,
then



Thus when n is even,

n—2 n—4

n—4 n—6

ﬁ(_D) 2 922 A2

n(n —4)(n —5) n-6 n-8
P T T A (159)

712 9
+"'—ZDA%,1+B.

+

We have also,
n—1

Pk (4 v) = 2(-2)"F DT R A,
where Ay, is the invariant,
A = (ab)" 717 (a7) () - (aa)(aa”)? - (aa™)? - (082 (b5")% - (b5M))?.

In this case,

R=(-2D)"T Ay + (n—2)(—2D)"T A,
— —4 n—5
n %(,Qd)TAQ (159,)
2 _
Jr...fn 1DAWT,3+AnT71.

Thus we have the following:

Theorem. The resultant of a form of second order with another form of even
order is always reducible in terms of invariants of lower degree, but in the case
of a form of odd order this is not proved owing to the presence of the term Aanl.

A few special cases of such resultants will now be given; (a), (b), (¢), (d).
(a)n =1:R = Ag, Ag = (ac)?
(b)n =2:R=—DAy + B? Ay = (ab)?, B = (ac).
R = —(aB)(ab)’ + (a0)2(b6)2.
(c)n =3 :R=—2DAg + Ay, Ag = (ab)?(ay)(by).
Ay = () (b) (a0 (b5)2.
R = —2(af)*(ab)*(a)(by) + (ay)(by)(aa)*(b5)>.
(d)n =4:R=2D*Ay — 4DA; + B?, Ay = (ab)™.
Ay = (ab)*(ac)?(08)*.
B = (aa)?*(ac’)?.
R =2(aB)*(a/B')*(ab)" — 4(ap)*(ab)*(aa’)?(b5')?
+ (aa)*(aa’)?(bB)*(05")*.
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6.4 Fundamental Systems for Special Groups of
Transformations

In the last section of Chapter I we have called attention to the fact that if the
group of transformations to which a form f is subjected is the special group
given by the transformations

_Sin(w—a)x,_'_sin(w—ﬁ) ;. _sina , sinf

T = - 1 - To;, T2 = — Ty T T To,
sinw sinw sinw sinw

then
q = 23 4 21129 COSW + T3

is a universal covariant. Boole was the first to discover that a simultaneous
concomitant of ¢ and any second binary quantic f is, when regarded as a function
of the coefficients and variables of f, a concomitant of the latter form alone under
the special group. Indeed the fundamental simultaneous system of ¢ and f taken
in the ordinary way is, from the other point of view, evidently a fundamental
system of f under the special group. Such a system is called a Boolean system
of f. We proceed to give illustrations of this type of fundamental system.

6.4.1 Boolean system of a linear form.

The Boolean system for a linear form,
l=a,x1 4+ a2,

is obtained by particularizing the coefficients of f in Paragraph I, Section 1
above by the substitution
bo, b1, b
(1, CcoS w 1) ’

Thus this fundamental system is

l=apr1 +a1x — 2,

q = 23 4 22129 COSW + T3,

a = sin’w,

b= (apcosw — ay)x1 + (ag — a1 cosw)xa,

c= a3 —2apa — 1cosw + a?.

6.4.2 Boolean system of a quadratic.

In order to obtain the corresponding system for a quadratic form we make the
above particularization of the b coefficients in the simultaneous system of two
quadratics (cf. Section 1, ITI above).

Thus we find that the Boolean system of f is
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2 2
f=aox] + 2a12129 + a3,
q = 23 4 22129 COSW + T3,

2

D = 2(apas — af),

d = sin? w,

e =ag+ az — 2aq cosw,

F = (agcosw — a1)x? + (ap — a1)x129 + (a1 — ap cosw)x3.

6.4.3 Formal modular system of a linear form.

If the group of transformations is the finite group formed by all transformations
T, whose coefficients are the positive residues of a prime number p then, as was
mentioned in Chapter I,

L =alzy — z12h

is a universal covariant. Also one can prove that all other universal covariants
of the group are covariants of L. Hence the simultaneous system of a linear
form [ and L, taken in the algebraic sense as the simultaneous system of a linear
form and a form of order p + 1 will give formal modular invariant formations
of I. We derive below a fundamental system of such concomitants for the case
p = 3. Note that some forms of the system are obtained by polarization. Let
f = aox1 + ai1ze; p = 3. The algebraical system of f is f itself. Polarizing this,

C = (.Tgaax) f = aol'i) + alxg, <x988x> f = 0,0.’13? —+ alxg — Cl7

D= (a388a> f=ay+ale,.
The fundamental system of universal covariants of the group T3 is
L=a3zy — x5, Q = 28 + il + 2225 + 25 = (L, L)%, L).
The simultaneous system of f and L is (cf. §1, II)
(L, f")(r=1,...,4); (Q,f*)°(s=1,...,6).

Of these some belong to the above polar system and some are reducible; as

(Q, f?)* = fC (mod 3). But
A= (L7f4)4 = a%al — aoai

B=(Q, f%)° = af + ajal + ajai + af,

E=(Q, %)’ = ai(ag — a})a? — agates + afwral + ao(ag — af)zj (mod 3).
The polars
(3 Z2)YD=f3 (2*2)E=DL
9. ’ ox
a B—aZ)AEO, (a‘?’%)BEA2 } (mod 3),



are reducible. The polar C’ is also reducible. In fact,
C'=0CQ — fL? (mod 3).
The formal fundamental system of f modulo 3 is

A7B’C7D7E7f7L7Q'

6.5 Associated Forms

Consider any two covariants ¢1, ¢o of a binary form f(z1,22) of order m. Let
the first polars of these be

A= b1y, p=oh 'an,

or
A= Xy1 + Aaya, pb = payr + paye (1591)
where 106 106
)\i e 1 i = — 2 ) = 1 2 .
n Ox;’ p Ox; (i=12)

Let the equations (1591) be solved for y1,y2. Then if J is the Jacobian of the
two covariants ¢1, ¢o, the result of substituting y1,yo for x1,z9 in f(x1,22) is

1
Fyry2) = 5 (AoA™ + AN+ A ™)

and the forms Ay, Ay,--- , A, are covariants of f, as will be proved below. But
the inverse of (1591) constitutes a linear transformation on the variables y1, yo
in which the new variables are A, u. Hence if

¢(a07a17 e aa/m;y17y2)

is any covariant of f with x1,zo replaced by the cogredient set y1,ys, and if
f(y1,y2) above is taken as the transformed form, the corresponding invariant
relation is

57m7Aa:u

Ay A A
O/¢(a07a17"' 7a7n;y17y2):']k¢ <Jn(,)7l7J,nl,L7 Jm >a

where C” is a constant. Now let (y) = (), and this relation becomes, on account
of the homogeneity in the coefficients,

C
¢(a0aa1a e 7a/m;a'17x2) = ?(ﬁ(AO)Alv' o aAm;¢17¢2)~

Thus every covariant ¢ of f is expressible rationally in terms of the m + 3
covariants of the system

AOvAlaAQa T aAma¢1a¢2-
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Such a system of covariants in terms of which all covariants of a form are ratio-
nally expressible is called a system of associated forms (Hermite). The expres-
sion for f(y1,y2) above is called a typical representation of f.

Now we may select for ¢ in this theory the universal covariant

¢2y = T1Y2 — T2Y1,

and then the coeflicient covariants Ag, A1, - -+ can be given in explicit symbolical
form. First, however, we obtain the typical representation of f as an expansion
based upon a formal identity. From

A= Ay1 + Aoy, = 1y + p2ye,

Le. A=Ay, u=py; and f = ay’, we have the identity

(Ap)ay = (ap) A — (ad)p.

If we raise both sides of this identity to the mth power we have at once the
symbolical representation of the typical representation of f, in the form

(A)™ f(y1,y2) = Bodm — mBIA" 4+ 4 (=1)" B,
where
Bo = (ap)™, By = (ap)™ 1 (a), By = (ap)™2(a\)?, -+, By = (a\)™.

Also
(Ap)™ = J™.

Now with p = (xy) we have
J = Ax1 + Ao = 1,
by Euler’s theorem. Moreover we now have
By =af = f.By = al' " (a)), By = (N,

for the associated forms, and

1
d(ag,ar, -+ 1y1,y2) = Ed’(Boa*BhB%'“ A1),
1

and

Qs(fa _B13B27 e 3¢7O)

1
¢(ag, a1, - ;x1,22) = —

i
Again a further simplification may be had by taking for ¢ the form f itself.
Then we have
By = f,B1 = (ab)a™ 'b™ ! = 0, By = (ab)(ac)a™ b tem= L.

x x

and the following theorem:
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Theorem. If in the leading coefficient of any covariant ¢ we make the replace-
ments

ag, ai, az, ag, Tty
¢1(: f)a _Bl(: O)a B27 _B37 Tty
and divide by a properly chosen power of ¢(= f) we have an expression for ¢
as a rational function of the set of m associated forms

$1(= f), B1(=0), By, Bs, - - .

For illustration let m = 3, f being a binary cubic. Let ¢ be the invariant R.
Then since

1 1
By = (ab)(ac)bycy « azbycy = §(ab)2ambzci = EA . f, B3 = fQ,

where A is the Hessian, and @ the cubic covariant of f, the typical representation
of fis

3
PPIy) =&+ 500" + Q.
If one selects for ¢ the invariant
1 2 2 2
fER = (agas — a1az)” — 4(apas — aj)(aras — a3),
and substitutes

ao, ai, az, as
f727 07 %Af727 7@][‘72 ’

1 _ 1,
_iR: |:(f 4Q)2+§f 3A3:| f6-

there results

That is,
—Rf? =2Q% + A3,

This is the syzygy connecting the members of the fundamental system of the
cubic f (cf. Chap. IV, §4). Thus the expression of R in terms of the associated
forms leads to a known syzygy.
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Chapter 7

COMBINANTS AND
RATIONAL CURVES

7.1 Combinants

In recent years marked advances have been made in that branch of algebraic
invariant theory known as the theory of combinants.

7.1.1 Definition.

Let f,g,h,--- be a set of m binary forms of order n, and suppose that m < n;
f=aoxt +--, g=box{ + -, h=cox{ + .
Let
¢(ar,ar, -3 bo, -5 co, 5 T1,72)

be a simultaneous concomitant of the set. If ¢ is such a function that when
f,9,h,--- are replaced by

f=&f4+mg+Ch+-, ¢d=&F+mg+CGh+---,
W=&f+mg+Ght- - (160)

the following relation holds:

(Zs(a/Oaa/la"' ,b67 ;067"' ;x17x2)
= (&n¢-)rd(ao, a1, 1o, sco, 0 a1, T2); (161)
where
513 n, Cla
f?a 72, C27
DE(§7]<): 637 73, C3a R I}

§4a M4, <47
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then ¢ is called a combinant of the set (Sylvester).
We have seen that a covariant of f in the ordinary sense is an invariant
function under two linear groups of transformations. These are the group given
by T and the induced group (23;) on the coefficients. A combinant is not only
invariantive under these two groups but also under a third group given by the
relations
ap = &rag +mbo + Cico + -+
ay =&ar +mby + Gier -+,
. (162)
by = &aa0 + m2bo + Caco + -+ -

As an illustration of a class of combinants we may note that all transvectants
of odd index of f and g are combinants of these forms. Indeed

(& f +mg,Ef +m2g)*
= L& DT+ En 9> + mna(g, 9)* ! (163)
= (&n)(f.9)* M,

by (79) and (81). Hence (f,g)?>" ™! is a combinant. Included in the class (163)
is the Jacobian of f and g, and the bilinear invariant of two forms of odd order
(Chap. III, V).

7.1.2 Theorem on Aronhold operators.

Theorem. FEvery concomitant, ¢, of the set f, g, h,--- which is annihilated by
each one of the complete system of Aronhold’s polar operators

() () () ()

18 a combinant of the set.

Observe first that ¢ is homogeneous, and in consequence

(a5 ) 0= r0: (g5 ) =0+

where 4 is the partial degree of ¢ in the coefficients a of f, is the degree of ¢ in
the coefficients of g, and so forth. Since (a2 )¢ = 0, then (a’;2;)¢' = 0. Thus

B
o9’
+ +nbo+ -+
(§1a0 +m1bo 0160)8(§2a0+n260+...+O'2€0)
o’
+ + by o+ 164
(101 +mby 0161)8(52(114-7]2(71 + -+ oge1) (164
o9’
+ (€10 + mba + - + 016, =0
(61& m o€ )a(€2an+n2bn+...+g—2@n)
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& Z a5 ¢/ 4oy Z i ¢I =0. (165)

0(&a; + - - + 02€;) I(&a; + - -+ 026€;)

¢ zn: ¢’ 0(&aa; + - - + 02e;)
L d(Ea; + o+ 026y 082
n
ol 8(£gai + -+ 0'261')

=0. 166
+Ul§a(€2ai+“‘+02€i) Joz (166)

Hence 8 o

and generally,
0 0 -0 S

Sud = (& . o ) gy =0 > 1) 167
= (6t o reg ) 6 2000, e
where i is the total degree of ¢ in all of the coefficients. In (167) we have m?
equations given by (s,t = 1,---,m). We select the following m of these and

solve them for the derivatives g—g, el

o9 aqs’ 20
5185 ting, - + +01801 =i¢,
¢ aqs' o4
5287&—“7728171 +"'+0'280_1 —0, (168)
o¢’ o9’ ¢’
: a¢, " o, s

Solution of these linear equations gives

o _ 8751 i1¢/ 8¢ _ grj]jl i1¢/, - o _ 7372 i1¢/
& (EnC---) T om (En¢--) T Aoy (EnCee) T
But we know that
as' = 2 g, + 7 et % 4o
& doy

Hence

Y
d¢’ = 8£d51+3an +...+87Dd01 ¢
S} om doq

dD
= 77/1(15
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Hence we can separate the variables and integrate:

d¢/ . dD
v "D
¢ = D" F(ag,...), (169)

where F' is the constant of integration. To determine F', particularize the rela-
tions (162) by taking all coefficients £, 7, - -+ zero except

S =mn=--=0,=1
Then aj = ag,a} = ay,--- ,b, = b;, etc., and (169) becomes
¢o=F.
Hence
¢’ = D",

which proves the theorem.

It is to be noted that the set (168) may be chosen so that the differentiations
are all taken with respect to &k, g, -+ in (168). Then we obtain in like manner

¢' = D™ ¢.

Thus

i1 =1y =" " =1inm.
That is, a combinant is such a simultaneous concomitant that its partial de-

grees in the coefficients of the several forms are all equal. This may be proved
independently as the

7.1.3 Partial degrees.

Theorem. A combinant is of equal partial degrees in the coefficients of each
form of the set.

‘We have

Hence

Thus 41 = d9. Similarly i; = ix(j,k =1,2,--- ,m).
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7.1.4 Resultants are combinants.

Theorem. The resultant of two binary forms of the same order is a combinant.

Let
[=flz1,22), g = g(x1,22).

Suppose the roots of f are (rgi),réi))(i =1,---,n), and of g (sgi),séi))(i =
1,--+,n). Then the resultant may be indicated by

1 1 2 2 n n
R=g(rM, v g(r® vy - g (M r§),

and by
R=f(s\" 5 (s, s2) - £t s5M).

Hence
a n n
(agg ) B =S108 g0 g7 =0

0 o
(b5 ) 7= Satet s o) 607, 7) =

Thus R is a combinant by Theorem II.

Gordan has shown! that there exists a fundamental combinant of a set of
forms. A fundamental combinant is one of a set which has the property that its
fundamental system of concomitants forms a fundamental system of combinants
of the set of forms. The proof of the Theorem II of this section really proves also
that every combinant is a homogeneous function of the determinants of order
m?

akl bk1 Ckl e lkl
ak2 bk2 Ck2 e lk2

bl
Oy Oky Chp o0 iy,

that can be formed from the coefficients of the forms of the set. This also follows
from (162). For the combinant is a simultaneous invariant of the linear forms

gak—Flek+<Ck+"'+0'lk-(k:071,"'7”), (170)

and every such invariant is a function of the determinants of sets of m such
linear forms. Indeed if we make the substitutions

§ = 515/ + 527]/ + -+ émala
n=m& +nem + - +nmo’,

IMathematische Annalen, Vol. 5.
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in (170) we obtain

ay = &ak +mby + Cieg + -+,
by, = &aak + mabr + Cack + - - -,

and these are precisely the equations (162).
For illustration, if the set of n-ics consists of
f= aox% + 2a17172 + agxg,

g = bzt + 2by 2129 + box3,
any combinant of the set is a function of the three second order determinants
(agb1 — a1bo), (agby — agby), (a1be — asby).
Now the Jacobian of f and g is
J = (agby — a1by)x? + (agby — asby)x129 + (a1by — azby)z3.

Hence any combinant is a concomitant of this Jacobian. In other words J
is the fundamental combinant for two quadratics. The fundamental system
of combinants here consists of J and its discriminant. The latter is also the
resultant of f and g¢.

The fundamental system of combinants of two cubics f, g, is (Gordan)

9= (f,9), 0=(f9)°, A=(9,9)% (0,9 (A,9), (A,9)"

The fundamental combinants are ¢ and 6, the fundamental system consisting
of the invariant 6 and the system of the quartic 9 (cf. Table II).

7.1.5 Bezout’s form of the resultant.
Let the forms f, g be quartics,

f=aoz] +aalzs + -,
g:box%+b1x§’x2+~~ .
From f =0, g = 0 we obtain, by division,
ap alx:{’ + agm%xg + CL3!L‘1£L‘% + a4:1c§
% a blx‘f + ng%xg + b3$1$§ + b4.73§ ’
apgx1 + a1xo . agx% + asx1x2 + a4x§
boxy + bixo a bg.ﬁ% + byrix0 + b4$i ’
aox% + a1x1x2 + agxg a3y + a4xo
bo.ﬁ% + bir120 + bgl‘% a bsr1 + byxo ’

aoxi’ + alx%xg + agxlxg + ag,xg Q4
b0x§ + b1$%$2 + b21‘1$% + bgl‘% by
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Now we clear of fractions in each equation and write

a; bl o
ar bk = Pik-

We then form the eliminant of the resulting four homogeneous cubic forms. This
is the resultant, and it takes the form

Po1 Po2 Dbos Poa
R — |Po2 Pos +pi2 Poa+ P13 Dia
Po3 Poa + P13 Pia+ P23 P2
Po4 P14 D24 P34

Thus the resultant is exhibited as a function of the determinants of the type
peculiar to combinants. This result is due to Bezout, and the method to Cauchy.

7.2 Rational Curves

If the coordinates of the points of a plane curve are rational integral functions of
a parameter the curve is called a rational curve. We may adopt a homogeneous
parameter and write the parametric equations of a plane quartic curve in the
form

r1 = a10€} + an&é + - +anés = fi(&, &),
Ty = a20&] + anéilo + -+ anl = fo(&1,&), (1701)
T3 = 613051l + a31§§f2 + -+ a34§§l = f3(&1,&2)-

We refer to this curve as the Ry, and to the rational plane curve of order n as
the R,,.

7.2.1 Meyer’s translation principle.

Let us intersect the curve R4 by two lines

Uy = U1T1 + UsXo + ugxg = 0,

Vg = 1121 + v2xo + v3z3 = 0.
The binary forms whose roots give the two tetrads of intersections are

ugp = (a10u1 + asous + asous)éy + (ar1ur + asius + azius)éils
+ (a12u1 + azous + asousz)€ius)ETES + (a1sur + assus + assus)éés

+ (@141 + azqug + 034U3)§§,

and the corresponding quartic vy. A root ( y), éi)) of uy = 0 substituted in

(1701) gives one of the intersections (xgi), mg), a:éi)) of u, =0 and the Ry.
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Now uy = 0, vy = 0 will have a common root if their resultant vanishes.
Consider this resultant in the Bezout form R. We then have, by taking

Qi = Q1U1 + AU + agius (1 =0,--- ,4),

Pik = GjuQky — AjyQky-
Thus

pit = (uv)1(agiask — askasi) + (uv)2(asair — ar;a3k)

+ (uwv)3(ariak — a1raz;),
where (uv); = ugvs — usve, (uv)y = uzvy — w13, (UV)3 = uvs — usvy. Hence

(uv)1  (uwv)y  (uv)s
Pik = | a1 a2; a3z;
a1k a2k a3k

But if we solve u, = 0, v, = 0 we obtain
X1 g a3 = (uv)y : (uv)g : (wv)s.

Therefore
T ) T3
pik =0 |a1;  az a3 | (i,k=0,---,4),
aig Ga2r  asg

where o is a constant proportionality factor. We abbreviate
Dik = olza;ag).

Now substitute these forms of p;; in the resultant R. The result is a ternary
form in 1, x9, x3 whose coefficients are functions of the coefficients of the Rjy.
Moreover the vanishing of the resulting ternary form is evidently the condition
that u, = 0, v, = 0 intersect on the R4. That is, this ternary form is the
cartesian equation of the rational curve. Similar results hold true for the R,, as
an easy extension shows.

Again every combinant of two forms of the same order is a function of the

determinants
a; ag

Dik = b; by

Hence the substitution
Pik = UlwaiakL

made in any combinant gives a plane curve. This curve is covariantive under
ternary collineations, and is called a covariant curve. It is the locus of the
intersection of u; = 0, v, = 0 when these two lines move so as to intersect the
rational curve in two point ranges having the projective property represented
by the vanishing of the combinant in which the substitutions are made.
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7.2.2 Covariant curves.

For example two cubics
f=aor} +arxizs+ - ,g=b+ 0z} +bixizy + -,
have the combinant

1
K = (a0b3 — agbo) — g(ale — agbl).

When K = 0 the cubics are said to be apolar. The rational curve R3 has, then,
the covariant curve

1
K(x) = |zagas| — §|ma1a2| =0.

This is a straight line. It is the locus of the point (u,v,) when the lines u, = 0,
v; = 0 move so as to cut R3 in apolar point ranges. It is, in fact, the line which
contains the three inflections of R3, and a proof of this theorem is given below.
Other theorems on covariant curves may be found in W. Fr. Meyer’s Apolaritéat
und Rationale Curven (1883). The process of passing from a binary combinant
to a ternary covariant here illustrated is called a translation principle. It is
easy to demonstrate directly that all curves obtained from combinants by this
principle are covariant curves.

Theorem. The line K(x) = 0 passes through all of the inflexzions of the rational
cubic curve R3.

To prove this we first show that if g is the cube of one of the linear factors
_ @ (1), \3
of f=ag 'z + ay 'x2)?,

g = (agl)xl + aél)x2)37

then the combinant K vanishes identically. In fact we then have
by = a§1)3 by = 3a§1)2a§) .

and
ag = agl)af)a(lg), a; = Zagl)a?)aé‘?’), .

When these are substituted in K it vanishes identically.

Now assume that u, is tangent to the R3 at an inflexion and that v, passes
through this inflexion. Then uy is the cube of one of the linear factors of v, and
hence K (z) vanishes, as above. Hence K (z) = 0 passes through all inflexions.

The bilinear invariant of two binary forms f, g of odd order 2n + 1 =m is

Ky, = a+0by, — maiby,—1 + (Tg)(hbmfz + -+ Maym—1b1 — ambo,

or

m m
Km = POm — MPim-—1 + <2)p2m2 -+ (_1>n<n>pnn+1a
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where f = apzi* + male71x2 4
If two lines u, = 0, v, = 0 cut a rational curve R,, of order m = 2n + 1 in
two ranges given by the respective binary forms
ug, vy

of order m, then in order that these ranges may have the projective property
K,, =0 it is necessary and sufficient that the point (u,,v,) trace the line

ilaiam—iz| _ o

Km(x) = Z(_l) (m)

This line contains all points on the R,, where the tangent has m points in
common with the curve at the point of tangency. The proof of this theorem is a
direct extension of that above for the case m = 3, and is evidently accomplished
with the proof of the following:

Theorem. A binary form, f, of order m is apolar to each one of the m, m-th
powers of its own linear factors.

Let the quantic be

f=ay =apr{" +--- = H(Téj)ﬂh — 7“@%2)-
j=1

The condition for apolarity of f with any form g = 07" is
(ab)™ = agbm — maibp—1 + -+ (=1)"ambo = (f,9)™ =0
But if g is the perfect m-th power,
9= (e =)™ = (@),
we have (cf. (88))
(f9)™ = (af, (ar@)™)™ = (=1)"aly),
which vanishes because (T‘%j ), réj )) is a root of f.
To derive another type of combinant, let f, g be two binary quartics,
f:aox%+4a1x§x2+--- . g:box‘ll—l—élblxi’xg—i—n- .
Then the quartic F = f + kg = Agz] + - - -, has the coefficient
A =a; + kb, (i=0,1,---,4).

The second degree invariant ip = AgAy —4A; Az +3A3 of F now takes the form

2.
z’:éz‘-k+5|;k2:m
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where § is the Aronhold operator

0 0 0 0 0
6= boé)Tzo +b187041 +b25‘7a2 +b387043 +b487a4,

and
i = apaq — 4aias + 3a%.

The discriminant of ip, e.g.,
G = (04)? — 2i(6%),
is a combinant of the two quartics f,g. Explicitly,
G = ppy + 16pT5 — 8pospis — 8po1psa + 12poapas — 48p12pos.
Applying the translation principle to G = 0 we have the covariant curve
, 1 , 1 1
G(z) = |agasx|” + 16 layasz|” — 3 lapasz| |arasx| — 5 lagaiz| |agasz]
+ 3 laoasa Jasase| — = arase] lasasa] = 0
= |agagx| |azasx| — — |arasx| |azaszz| = 0.
3 10002 204 19 19102 203

If ir = 0 the quartic F' is said to be self-apolar, and the curve G(x) = 0 has
the property that any tangent to it cuts the R, in a self-apolar range of points.
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Chapter 8

SEMINVARIANTS.
MODULAR INVARIANTS

8.1 Binary Semivariants

We have already called attention, in Chapter I, Section 1, VIII, to the fact that
a complete group of transformations may be built up by combination of several
particular types of transformations.

8.1.1 Generators of the group of binary collineations.

The infinite group given by the transformations T is obtainable by combination
of the following particular linear transformations:

t:x = Az, 20 = py,

tirex=a' +vyy=1v,

ty 2’ =2,y = ozt + 2.
For this succession of three transformations combines into

x1 = N1+ ov) 2| + Mvah, zy = opx] + pab,
and evidently the four parameters,
fo = Ao = o, i1 = A, A = A(1+ov),
are independent. Hence the combination of ¢, ¢q,t5 is
T :xy = \MT) + pTh, To = AT + oy,

In Section 4 of Chapter VI some attention was given to fundamental sys-
tems of invariants and covariants when a form is subjected to special groups of
transformations 7},. These are the formal modular concomitants. Booleans are
also of this character. We now develop the theory of invariants of a binary form
f subject to the special transformations ¢;.
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8.1.2 Definition.

Any homogeneous, isobaric function of the coefficients of a binary form f whose
coefficients are arbitrary variables, which is left invariant when f is subjected to
the transformation ¢; is called a seminvariant. Any such function left invariant
by to is called an anti-seminvariant.

In Section 2 of Chapter I it was proved that a necessary and sufficient con-
dition that a homogeneous function of the coefficients of a form f of order m
be an invariant is that it be annihilated by

0 0 0
O—ma1a—a0—|—(m—1)a2a—al+--~+amm,

Q=a i+2a iJr + ma 9
~ 9, Y ay " 9a,,

We now prove the following:

8.1.3 Theorem on annihilator (2.

Theorem. A necessary and sufficient condition in order that a function I,
homogeneous and isobaric in the coefficients of f = al', may be a seminvariant

of f is that it satisfy the linear partial differential equation QI = 0.

Transformation of f = agz}* + mayxy" ‘xg + -+ by t1 gives f/ = aha|™ +
mahx™  ah + -+ where
I
ag = ao,

a; = aj + agv,
2
ay = az + 2a1v + agv”,

Hence
day, Oa} , Od), , Odl , da, ,
_— T = 77:2 77:3 7_..’7777,: m—1-+
v o 5y “ Ty %2 Ov Mm-1
Now we have
dl(ag,ay,---) Ol dag n oI daj T oI 0Oal,
Ov ~ Qa)y v da)) dv Oal, Ov
0 0
— r_= 2/7 cea / 7129/1 /"'. 172
(aO aall + a aa/z + + may, aa;n) (0'07 ) ( )
But M‘;)) = 0 is a necessary and sufficient condition in order that
I(al, -+ ,al,) may be free from v, i.e. in order that I(ap,---) may be un-
affected when we make v = 0. But when v =0, a; = a; and

I(agy, - yal,) =I(ag, - ,am)-
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Hence 9 = V'(af),-+) = 0 is the condition that I(af),---) be a seminvariant.

Dropping primes, QI (ag,---) = 0 is a necessary and sufficient condition that
I(ap,---) be a seminvariant.

8.1.4 Formation of seminvariants.

We may employ the operator €2 advantageously in order to construct the sem-
invariants of given degree and weight. For illustration let the degree be 2 and
the weight w. If w is even every seminvariant must be of the form

I = agay + Ma1ay—1 + Aoaay—o + - + )\%waéw.
Then by the preceding theorem
QI = (w+ A)agaw—1 + (w—1)A +2X2)a1ay—2+--- = 0.
Or

1
w+A; =0, (w—1)A14+2X2 = 0, (w—2)A2+3X3 =0, - - -, <2w + 1) Aly_1TwAy, =0.

2

Solution of these linear equations for Aq, Ao, -+ gives

w w
I = aga., — 1 a10p—1 + 9 20— —

Loy w 1 1,( W
HeDE () Yo sagen + 503 ()1 )a

[N

w’

Thus there is a single seminvariant of degree 2 for every even weight not exceed-
ing m.
For an odd weight w we would assume

I = agQqy, + Alalaw_l + -+ /\%(w_l)a%(w_l)a%(w+l).

Then QI = 0 gives
1 1
wAr =0, (w=1)A+242 = 0, , S(WH3)A 4 (-5) F5 (W=D A3 -1) = 0, A3 1) = 0.

Hence Ay =Xy =--- = )\%(wfl) = 0, and no seminvariant exists.
Thus the complete set of seminvariants of the second degree is

Ay = apay — a3,

Ay = agas — 4ajasz + 3a%,

Ag = apag — 6aias + 15a0a4 — 10a§7

Ag = apag — 8aiar + 28asag — 56azas + 35(12.
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The same method may be employed for the seminvariants of any degree and
weight. If the number of linear equations obtained from QI = 0 for the de-

termination is just sufficient for the determination of A1, Ao, Az, -+ and if these
equations are consistent, then there is just one seminvariant I of the given degree
and weight. If the equations are inconsistent, save for A\g = Ay = Ay = --- =0,

there is no seminvariant. If the number of linear equations is such that one
can merely express all A’s in terms of r independent ones, then the result of
eliminating all possible A’s from I is an expression

T=XMI +Xolo+ -+ A\

In this case there are r linearly independent seminvariants of the given degree
and weight. These may be chosen as

IlaIQa"' aIT~

8.1.5 Roberts’ Theorem.

Theorem. If Cy is the leading coefficient of a covariant of f = apx{* +--- of
order w, and C,, is its last coefficient, then the covariant may be expressed in
the forms

OC, 02C ovC
Con + =229 gy + 0297222 4. 4 02, (173)
1! 2! w!
wc, ., Q7o Lo, QC, 1 w
o i + @=1) I TR + Cpas. (174)

Moreover, Cy is a seminvariant and C,, an anti-seminvariant.

Let the explicit form of the covariant be
w w -1 w
K = Cozy + 1 Cia? "xe + -+ Cpas.

Then by Chapter I, Section 2, XII,

QCox” + w(QCl - Co)CL'Lf_ll'Q + (Z) (QCQ - 2C1)w‘f_2x§ +o

+w(QCu-1 —w = 1Cu—2)e1as ™" + (0, —wClmr)as =0.

150



Hence the separate coefficients in the latter equation must vanish, and therefore

QCy =0,
QC, = CO)
OC, = 20,

QCw,1 = (w — ].)Cw,Q,
QC, = wCy_1.

The first of these shows that Cy is a seminvariant. Combining the remaining
ones, beginning with the last, we have at once the determination of the coeffi-

cients indicated in (174).
7]
O-—z1—|K=0
< 1 8332 > ’

In a similar manner
OCO :wcl, OCl :(w—l)02,~-~ 5 OCw_l :CM,OCMZO;
C; = L OiCo(i:07~-~ W),

w(w—1)(w—2)-(w—1i+1)

and this leads to

This gives (173).

It is evident from this remarkable theorem that a covariant of a form f is
completely and uniquely determined by its leading coefficient. Thus in view of a
converse theorem in the next paragraph the problem of determining covariants
is really reduced to the one of determining its seminvariants, and from certain
points of view the latter is a much simpler problem. To give an elementary
illustration let f be a cubic. Then

7] 0 0
= - 200 —— __
0 3(11 8a0 + 2 8a1 tas Bag ’

and if Cy is the seminvariant agas — a? we have
_ 27 _ 2 3
OCO = apasz — a1aa, O CO = 2(&1&3 - a2), 0] CO =0.

Then 2K is the Hessian of f, and is determined uniquely from Cj.

8.1.6 Symbolical representation of seminvariants.

The symbolical representation of the seminvariant leading coefficient Cy of any
covariant K of f, i.e.

K = (ab)P(ac)?---albsct - (r+s+t4---=w),

is easily found. For, this is the coefficient of z; in K, and in the expansion of

(ab)?(ac)?--- (a1x1 + agza)" (b1xy + baza)® - -
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the coefficient of z¢ is evidently the same as the whole expression K except that
a1 replaces a;, by replaces b,, and so forth. Hence the seminvariant leader of K

is
Co = (ab)?(ac)?---afbict -

(r+s+t+---a positive number). (175)

In any particular case this may be easily computed in terms of the actual coef-
ficients of f (cf. Chap. III, §2, I).

Theorem. Fvery rational integral seminvariant of f may be represented as a
polynomial in expressions of the type Cy, with constant coefficients.

For let ¢ be the seminvariant and
d)(aé,) :¢(a07...)
the seminvariant relation. The transformed of

f=(a1z1 + agza)™

by
ty iy = 2] + vah, xe = 15,
is
f=lonay + (onv + ag)ap]™
If the ag,aq,--- in ¢(ag,---) are replaced by their symbolical equivalents it
becomes a polynomial in aq, as, B1, B2, -+ say F(ay, as, f1,B2,...). Then
Plag,---) = Floa,a1v+ ag, B, brv+ Pa,--+)

= F(O[l,OéQ,ﬂl,BQ,"').

Expansion by Taylor’s theorem gives

0 0 0
I/(Oé18a2+51aﬂ2+’718,y2+"'>F(CY1,042751,52,"'):0~

Now a necessary and sufficient condition that F' should satisfy the linear partial
differential relation

OF = <a18+ﬁ18+...>F:0,
8042

0Pz
is that F' should involve the letters as, B2, ... only in the combinations
(Q/B)a (Oé"}/), (B’Y)v e
In fact, treating 0F = 0 as a linear equation with constant coefficients
(a1, P71, -+ being unaltered under ¢1) we have the auxiliary equations
dOéQ o dﬁz - d’}/g o - dF
a1 /31 ’)/1 0 ’
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Hence F' is a function of (af), (ay), - with constant coefficients which may

involve the constants aj,f1,---. In other words, since ¢(ag) = F(a,---) is
rational and integral in the a’s F' is a polynomial in these combinations with
coefficients which are algebraical rational expressions in the aq, 81, --. Also

every term of such an expression is invariant under tq, i.e. under
r r
o] =, 09 = 0V + Qo0

and is of the form
o = (aB)" (o) a7 -+

required by the theorem.
We may also prove as follows: Assume that F' is a function of (af), (ay),
(ad), - -+ and of any other arbitrary quantity s. Then

W OF | OF 90f) | OF day) L OF s
Y000~ '0(aB Oas Yo(ay) Oas Y85 day’
OF . OF 3(ap) OF 8(ay) OF s
5 bctay ~ P ataB 08 Doty 9k T TP as oy
etc. But
W OF dp) _ 8 OF
Yo(aB) Oag Y1 a(ap)’
OF 9(aB) OF
P o) 08~ TP 5ap)
Hence by summing the above equations we have
oF Os Js oF
oF =55 (a”ag*) “a

Since s is entirely arbitrary we can select it so that ds # 0. Then %—f =0, and

F, being free from s, is a function of the required combinations only.

Theorem. FEvery seminvariant of f of the rational integral type is the leading
coefficient of a covariant of f.

It is only required to prove that for the terms I'y above w = p+ 0o +--- is
constant, and each index

P05

is always a positive integer or zero. For if this be true the substitution of
Qg, Bz, -+ for aq, f1, - - respectively in the factors o/ 57 - -+ of I'g and the other
terms of F, gives a covariant of order w whose leading coefficient is ¢(ag, - - ).

We have
> To=) (aB)(ay)" - afBy - = dlao, ).
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If the degree of ¢ is i, the number of symbols involved in I'y is ¢ and its degree
in these symbols iém. The number of determinant factors (a3)-- - is, in general,

w=p1+pzt-+PLi-1)

and this is the weight of ¢. The degree in the symbols contributed to 'y by the
factors (af) - -- is evidently 2w, and we have p, o, - all positive and

m 2 2w,

that is,
w=1im — 2w 2 0.

For a more comprehensive proof let

0 0
d—a2@+ﬂ2%+---
Then
0 0 0

0
6d—d5—a1@+6167m+"'—a2@—ﬁ28752+---

Hence, since I'y is homogeneous in the symbols we have by Euler’s theorem,

(5d — d(S)Fo = (w +w — ’LU)FQ = wFO,
(6d* — d*6)Ty = (dd — dd)dTy + d(6d — d6)Ty = 2(w — 1)dT,
(6d* —d*"Ty = k (w—k+1)d" To(k=1,2,...),
But
6Ty = 0, hence 6d*Ty = k(w — k + 1)d*~1T.
Also
da; = da? ‘ah=(m—1i)a;_y =O0a; (i=0,1,...,m—1),
d¢p = %dao + %dal + -4 a¢ day,—1 = Og.
Oag day Gm—1

Hence d*Ty is of weight w + k. Then
dim—w+11-w0 = 0.

For this is of weight im+ 1 whereas the greatest possible weight of an expression
of degree ¢ is im, the weight of a!

m*

Now assume w to be negative. Then d"™~*Ty = 0 because
§d"™ Ty = (im — w + V)[w — (im —w + 1) + 1]d"™ “Ty = 0.
Next d"™~%~1T = 0 because
§d"™ Ty = (im — w)[w — (im — w) + 1]d"™ 1Ty = 0.
Proceeding in this way we obtain I'y = 0, contrary to hypothesis. Hence the

theorem is proved.
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8.1.7 Finite systems of binary seminvariants.

If the binary form f = agx}* + ma;z]"~* + - be transformed by
1 =) +vrh, o = b,

there will result,
= Coz"™ + mCra ™™ 1z’2 < )szl:/m 2x/22 + o+ Crad™,
in which
Ci = apv’ +ia vt + (;) a4 +iai_v + a;. (176)

Since QCy = Qag = 0, Cp is a seminvariant. Under what circumstances will all
of the coefficients C;(i =0, - -- ,m) be seminvariants? If C; is a seminvariant

QC1 = Qapr + a1) = aov + ag = 0.

That is, Qv = —1. We proceed to show that if this condition is satisfied QC; = 0
for all values of 3.

Assume Qv = —1 and operate upon C; by Q. The result is capable of sim-
plification by

W =" = —sp*7 1,
and is
0C;, = —iagr™ ( ) i—1) a11/ 2. (;) (i— r)a,.vifrfl —
—ia;_ 1+( ) 2 1+2( ) AR
<r+1>( + e T dage
But
i =1 (G—r+1)GE—-r) AW
1) = _ _).
(r+1)(r+ ) 7! r (i=7)
Hence QC; = 0.
Now one value of v for which Qv =—-1isv = —Z—;. If f be transformed by

o ay o
T = 131 - ixg,.fL'Q — IIJ2,
ag
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then C7 = 0, and all of the remaining coefficients C; are seminvariants. More-
over, in the result of the transformation,

Fi = ag_lci = af)_lalv — (1> (IB—QCLi_lal + <2) af)_gai_ga? — e
+ (=12 (;) apaza’™? + (1)1 (i — 1)al

= S ()it + 0 v

r=2

This gives the explicit form of the seminvariants. The transformed form itself
may now be written

m\ T2 ,.._ m\1's ,.._ Lo
f’:I‘Ox’lm—i—(z)sz’l 2x§2+<3>rgx’1 3x’23+...+Wx’2 .
0 0

Theorem. FEvery seminvariant of f is expressible rationally in terms of T'g, I's,
I3, ---, I')i. One obtains this expression by replacing ay by 0, ag by 'y, and
a;(i #0,1) by

Ui in the original form of the seminvariant. Except for a power of Ty =
ao mo the denominator the seminvariant is rational and integral in the I';(i =
0,2,---,m) (Cayley).

In order to prove this theorem we need only note that f’ is the transformed
form of f under a transformation of determinant unity and that the seminvari-
ant, as 9, is invariantive under this transformation. Hence

Ty Ts T, )

,FO,F%).'. 7W = S(ag,a1,a2, - ,am), (177)

s (ro, 0
which proves the theorem.
For illustration consider the seminvariant
S = agay — 4ara3 + 3a§.

This becomes 1
S = ﬁ(?,rg +Ty),
0

or
S = agas —4ajas + 3a§
1
= ?[S(aoag — a%)2 + (a8a4 — 4a(2)a1a3 + 6a0a%a2 — 3a‘11)].
0

This is an identity. If the coeflicients appertain to the binary quartic the equa-
tion becomes (cf. (125))

1
ia%i =303 +Ty.
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Again if we take for S the cubic invariant J of the quartic we obtain

ao 0 LFQ
1 1 1
,J — O *FQ —2F3

aop ao )
1 1 1
ir, ATy &y

or 1
6agJ =Toly — T3 -T2

Combining the two results for ¢ and J we have
1 .
[Ty = iangQ — 305 = faOJ + T35+ T2

Now 2I';5 is the seminvariant leading coefficient of the Hessian H of the quartic
f, and I's is the leader of the covariant T. In view of Roberts’ theorem we
may expect the several covariants of f to satisfy the same identity as their
seminvariant leaders. Substituting %H for T'y, T for I's, and f for ag, the last
equation gives

1 1
H3+§f3J+2T2—§if2H:

which is the known syzygy (cf. (140)).

8.2 Ternary Seminvariants

We treat next the seminvariants of ternary forms, Let the ternary quantic of
order m be

m)!

m

= E —————— Omimams 1 Tay?xy'® (my + ma +ms =m).
mi:moims:

When this is transformed by ternary collineations,
x1 = Mz + pah + vk,
Vi xg = Ao + poxh + voxh,

x3 = A3z} + pszy +vaxh, (Auv) #0

it becomes f’, where the new coefficients a’ are of order m in the \’s, u’s, and
v’s. This form f may be represented symbolically by

f=al' = (a1x1 + asxe + azzs)™
The transformed form is then (cf. (76))
f=(axal + aux/z + ayay)™ (178)

= E — 0 laZ”ameTlxg”x?S (mq + mg +m3 =m).
m1 mo: mg
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Then we have

a’{rnlmwng a;\nlazl2am3
Now let
E B 0 n 0 n 0
Fax) = Max, T2 T Moy
0 0 0 0
<1/8)\> = 6 + VQW + v —— o (cf. (58)).

Then, evidently (cf. (75) and (231))

m! , o\ aN"™ B
(= — mg)l mmams = (“m) (”m) ay'  (mit+ma+ms=m).
(179)
This shows that the leading coefficient of the transformed form is ay’, i.e. the
form f itself with (z) replaced by (\), and that the general coefficient results
from the double ternary polarization of a}* as indicated by (179).

Definition.

Let ¢ be a rational, integral, homogeneous function of the coefficients of f, and
¢’ the same function of the coefficients of f’. Then if for any operator (u-),

()‘a%)’ .-+, say for (A%), the relation

0 ;o
(ar) o =0

is true, ¢ is called a seminvariant of f.
The reader should compare this definition with the analytical definition of
an invariant, of Chapter I, Section 2, XI.

8.2.1 Annihilators

. A consequence of this definition is that a seminvariant satisfies a linear partial
differential equation, or annihilator, analogous to €2 in the binary theory.
For,

2 / 8¢/ aameO 8¢/ 8am1m2m%
(Afm)‘z’ = g (A on )T A o )V

mima2ms
o¢’ dagy
A\ —m
" aa/OOm < a:u ,

and

Oa, 0
)\77”5’”27"3 = )\8— alta?al® = maal el = maal
1 u

mi+1mo—1msg-
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Hence

0 ) 09’
A— | ¢’ = M2, 1 mo—1my 7 = 0(m1 +ma +mg =m).
( a/‘L ;1 ! 2 3aa’;nlmgm3
(180)

Now since the operator

S o 9

mi1+1mo—1m
o 1 2 3 8a;711m2m3

annihilates ¢’ then the following operator, which is ordinarily indicated by
Quy2,, is an annihilator of ¢.

91211 = Z mMaQm;+1mo—1 mgai (ml + mg +m3 = m) (181)
Amimaoms

mi
The explicit form of a ternary cubic is

3 2 2 3 2
f = az00] + 3a21027%2 + 301207175 + Ao30T5 + 3G201 T T3

2 2 2 3
+ 6a111717273 + 30217573 + 3a1022173 + 3A012T2T3 + A3 T3-

In this particular case

0
Qiozy = —2 —+3
21 = @300 8a210+ a210 D10 + 3ai20 Daoso + az01 Dalll
+2 9_, 0 (182)
1115 +a .
115, 57 T a0,

This operator is the one which is analogous to € in the binary theory. From
(ua%) @' by like processes, one obtains the analogue of O, e.g. Q. ,,. Similarly
Qyyas, Qrazy, Qrozs, Qxszs may all be derived. An independent set of these six
operators characterize full invariants in the ternary theory, in the same sense
that Q, O characterize binary invariants. For such we may choose the cyclic set
Qzlmz ) Q{L’z{l}g ’ sz,$1~

Now let the ternary m-ic form

m m—1 m
f = amoox!" + mam—1102]"" X2 + - + Gomoxy

m—1 m—2 m—1
+ m(am—1012] + (m—1Dam—on1x]" “x2 + -+ + Gom—11T5 " )T3

be transformed by the following substitutions of determinant unity:

/ Am—110 Am—101
T =x] — To — 35
Am00 Am00
/
1:2 :.'172,
T3 :xé. (183)
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Then the transformed form f’ lacks the terms z}"~'a}, /" a}. The coeffi-
cients of the remaining terms are seminvariants. We shall illustrate this merely.
Let m =2,

2 2 2
f = a0 + 2a110T122 + @207 + 20101123 + 200112273 + Ap0273-
Then
/ 2 12 2 2 /W)
a0 f" =azppTy” + (ao20a200 — a110)372 + 2(agi1a200 — a101a11o)$2$3
2 2
+(a002a200 - a101)x3 .

It is easy to show that all coefficients of f’ are annihilated by Qg,4, -
Likewise if the ternary cubic be transformed by
[ a10 = a201 =
1=T) — — Ty — — Ty,
Yoageo ? agoo
Ty =), T3 =7,

and the result indicated by a3g,f’ = Asze0z® + 3As1022xh + ..., we have
Az00 = a3y, (184)
AQIO = 07

A120 = azoo (a300a120 - a%lo) )

Apzo = 2a§10 — 3az10a120a300 + aogoagom

Aggp =0,

Aq11 = azoo (a300a111 - a210a201) s

Aoa1 = a300a021 — G30002010120 — 2421001110300 + 20310201 5

A2 = asoo (asooa102 — a3gy) »

Ap12 = a350a012 — A3000102a210 — 2430002010111 + 203012105

Anos = 2a3; — 3a300a201@102 + 0038300 -
These are all seminvariants of the cubic. It will be noted that the vanishing of
a complete set of seminvariants of this type gives a (redundant) set of sufficient
conditions that the form be a perfect mth power. All seminvariants of f are

expressible rationally in terms of the A’s, since f’ is the transformed of f by a
transformation of determinant unity.

8.2.2 Symmetric functions of groups of letters.

If we multiply together the three linear factors of

f= (agl)xl + aél)xz + aél)zg) (a?)m + OééQ)JUz + Oz§2)$3> (a§3)m1 + ozg?’)xz +«
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the result is a ternary cubic form (a 3-line), f = azgoz? +.... The coefficients
of this quantic are

asoo = 3" 0Pa{Pa® = a{MaPal®,

ar0 =3 aPaPaf® = 0PaPaf® + a{aPal® + afPaa®,

a0 =Y aPa@af = 0ol + alaPaf® + afPa® o,

ass0 = 3" oo af® = afaPa?,

azo1 = 3" e o = 0PaPaf® + a{aPal® + oMo a®,

s = Y aPaPaf) = a0l + oMol + aaPaf)

+0P0@a® 4 aPa®@a® 4 oMo,

0021 = 0al’aPa® = aa®a® 1 olPa@a® + aPaPal®,
a102 = Uagl)az(f)aé ) = a( )a(Z)ozéB) a(l)a(z)aé ) + aél)a@)agg),
0012 = ra’aPa® = aPa®a® 1 alPaPa® + aPaPal®,

ap03 = aagl)a§2)a§3) = ag )ozéz)aés).

These functions o are all unaltered by those interchanges of letters which have
the effect of permuting the linear factors of f among themselves. Any function

of the agj ) having this property is called a symmetric function of the three
groups of three homogeneous letters,

(9,080, o)
(a§2),a§2),a§2)) 7
3 3 3
(a(l ),aé ), :(3))7

In general, a symmetric function of m groups of three homogeneous letters,
a1, o, asg, i.e. of the groups

" (agl), aél), agl)) ’

V2 (a(Z) aéQ)a g2))a

o (o, 0f)

is such a function as is left unaltered by all of the permutations of the letters a
which have the effect of permuting the groups 7172, ..., among themselves:
at least by such permutations. This is evidently such a function as is left un-
changed by all permutations of the superscripts of the a’s. A symmetric function
of m groups of the three letters ai,as, s, every term of which involves as a
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factor one each of the symbols o™, a(® ... a(™) is called an elementary sym-
metric function. Thus the set of functions a310, a210, ... above is the complete
set of elementary symmetric functions of three groups of three homogeneous
variables. The non-homogeneous elementary symmetric functions are obtained
from these by replacing the symbols agl)a?)aé‘g) each by unity.

The number N of elementary symmetric functions of m groups of two non-
homogeneous variables @, 0,0,am; —1,1,0--- is, by the analogy with the coef-
ficients of a linearly factorable ternary form of order m,

1
N:m+m+(m—1)+(m—2)+-~-+2+l:5m(m+3).

The N equations a;jr = X, regarded as equations in the 2m unknowns
agr),ags) (r,s = 1,---,m), can, theoretically, be combined so as to eliminate

these 2munknowns. The result of this elimination will be a set of

1m(m +3)—2m = }m(m -1

2 2

equations of condition connecting the quantities @00, @m—110, -+ only. If these
a’s are considered to be coefficients of the general ternary form f of order m,
whose leading coeficient agg3 is unity, the %m(m — 1) equations of condition
constitute a set of necessary and sufficient conditions in order that f may be
linearly factorable.

Analogously to the circumstances in the binary case, it is true as a theorem
that any symmetric function of m groups of two non-homogeneous variables
is rationally and integrally expressible in terms of the elementary symmetric
functions. Tables giving these expressions for all functions of weights 1 to 6
inclusive were published by Junker® in 1897.

8.2.3 Semi-discriminants

We shall now derive a class of seminvariants whose vanishing gives a set of
conditions in order that the ternary form f of order m may be the product of
m linear forms.

The present method leads to a set of conditional relations containing the ex-
act minimum number $m(m—1); that is, it leads to a set of 3m(m—1) indepen-
dent seminvariants of the form, whose simultaneous vanishing gives necessary
and sufficient conditions for the factorability. We shall call these seminvariants
semi-discriminants of the form. They are all of the same degree 2m — 1; and
are readily formed for any order m as simultaneous invariants of a certain set
of binary quantics related to the original ternary form.

If a polynomial, f3,,, of order m, and homogeneous in three variables
(21,22, z3) is factorable into linear factors, its terms in (z1,22) must furnish
the (z1,z2) terms of those factors. Call these terms collectively af)’,, and the

IWiener Denkschriften for 1897.
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terms linear in x3 collectively xgaﬁfl. Then if the factors of the former were
known, and were distinct, say

afy = ool (1 o1 = ri2) + T2, (7).

the second would give by rational means the terms in z3 required to complete
the several factors. For we could find rationally the numerators of the partial
fractions in the decomposition of aﬁ_l Jagh, viz.

m—1 m

m (1) .

ayy  _ HiZyry Z @i
m i i ’
Az Qoo T réz)xl — ’I"El)lfg

and the factors of the complete form will be, of course,

réi)xl - T'gi)iﬁz +axs(i=1,2,--- ,m).
Further, the coefficients of all other terms in f3,, are rational integral functions
of the r® on the.one hand, and of the ; on the other, symmetrical in the
sets (rg), —r%i), «;). We shall show in general that all these coefficients in the
case of any linearly factorable form are rationally expressible in terms of those
occurring in agy, aﬁ_l. Hence will follow the important theorem,

Theorem. If a ternary form fs,, is decomposable into linear factors, all its
coefficients, after certain 2m, are expressible rationally in terms of those 2m
coefficients. That is, in the space whose codrdinates are all the coefficients of
ternary forms of order m, the forms composed of linear factors fill a rational
spread of 2m dimensions.

We shall thus obtain the explicit form of the general ternary quantic which
is factorable into linear factors. Moreover, in case fs,, is not factorable a similar
development will give the theorem,

Theorem. Every ternary form fs,,, for which the discriminant D of af), does
not vanish, can be expressed as the sum of the product of m distinct linear forms,
plus the square of an arbitrarily chosen linear form, multiplied by a “satellite”
form of order m — 2 whose coefficients are, except for the factor D1, integral
rational seminvariants of the original form fs.,.

A class of ternary seminvariants

Let us write the general ternary quantic in homogeneous variables as follows:

m—1 m—2_2
f3m:ag;+a1m T3 + Qg x3+~~+am0z?,

where

m—i m—1i m—i—1 m—i1—2,_2 m—i/(;
al”t = apr] T ' an ] Tota;oT] x5+ taim—ix] (i =0,1,2,--- ;m).
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Then write

apy apy - a* .2 (m)
agh T ) (k) =2 (000 =73 rs T )
0z I[I(rs x1 — 7 22) k=172 T1—T1 T2

k=1

and we have in consequence, assuming that D # 0, and writing

m m
a/m _ |:8a0x:| l/m _ |:6CL0$:|
or(k) — y Qop(k) = R
0x1 o1 =1 gy =rl®) 0xo 1=r{? ggmr
the results
(k) m—1 _ ) m 1 nm
ar =1y ) 00 /Agl = =11 a4 G /g, - (185)
Hence also
r(k)
nm 1 m
Aop(k) = — (k) Q. (k) - (186)
T2

The discriminant of af}, can be expressed in the following form:

m
’ 1 -1
D= H%Tm/aoo(—l)Qm(m ), (187)
j=1
and therefore
(k) m— a'™ alm m m
Ty Q _na coeq
1 (k) A1) @ 0 2y g 1) G e or(m)
ay, = 12 %ort Gor vttt Gor ol (188)

Cl,oo(—l) 2m(m71)D

and in like manner we get

H Qg 117:‘(1%(1717;\(2% 17’(’") /( )zm(mil)D' (189)
k=1

The numerator of the right-hand member of this last equality is evidently the
resultant (say R,,) of af’. and a]%
Consider next the two dlfferentlal operators

+- 4+ Aom—157 >
3(11m—1

0 1o}
Oaig * (m a 1)a01 Oaiy

Al = mapo

Ay = Mmaom 35—+ (m — 1)a0m—18a7 +--+aon
Im—1 Im—2

aalo ;
and particularly their effect when applied to a7’ ". We get (cf. (186))

(k)

1 m (190)

—1 I
(k) 5 Qork) >

m m
A1a1 (k) aor<k>vA2a17-<k> Aork) = —
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and from these relations we deduce the following:

mlml m—1

AR, 1r %@ " Aypm-1)
A ag, = i i ’ 191
1H g smm=11p OOZ gy Ggriz) T g m—1) o
or, from (185)
AR m
Za1a2 FOm— 17"5 g (192)

( I)Qm(m 1) 1'D

In (191) the symmetric function Y is to be read with reference to the 7’s, the
superscripts of the 7’s replacing the subscripts usual in a symmetric function.
Let us now operate with Ay on both members of (191). This gives

-1, m—l m—1 m
A1A2Rm 00 Z 1,,(1) 1,,(2) : 1,,(m 2) _Tg ) _ 7"](_ ) )
(—1)§m(m_l)l!D 07,.(1) 0r(2> : Or(m72) Tgmil) rém)

Let Xj, represent an elementary symmetric function of the two groups of ho-
mogeneous variables ry, ro which involves h distinct letters of each group, viz.
r(m (5 = 1,2+ h). Then we have

A1A2Rm
(—=1)2m(m=11111D

=% [(—1)041042 e am_ngrgm 1)rém)} . (193)

We are now in position to prove by induction the following fundamental formula:
ATTSTIALR,,
(=1)zmm=1)(m — s — )ItID

-y (—1)ta1042 g, 5T§S+1) §s+2) . T‘§S+t)7“(s+2) L T§S+t)’l“és+t+1) o rém)

(194)

(5:0,1,"',771; t:0,1,~~,m—5),

where the outer summation covers all subscripts from 1 to m, superscripts of the
r’s counting as subscripts in the symmetric function. Representing by Jp,_s_¢
the left-hand member of this equality we have from (190)

amflamfl . —1
t+1 1) "1(2) 1<<1>
AgJm—stp = S((=1)"" Im m lr
atm g
or) Qor@ T Agps-1)
W@ T (s41) (s8), (s+t+1) _ (m)
S S S S m
X T Ty Ty (S)Zm_srl sy T g sy ).
r
2

This equals
E(fl)Hlalag ceeg_19,

where S is a symmetric function each term of which involves t 4+ 1 letters r;
and m — s — t letters 9. The number of terms in an elementary symmetric
function of any number of groups of homogeneous variables equals the number

165



of permutations of the letters occurring in any one term when the subscripts
(here superscripts) are removed. Hence the number of terms in %, is

(m —s)!
(m—s—t)lt!’
and the number of terms in S is
(m—s4+1)(m—s)!/tl(m—s—1t).
But the number of terms in

Bncegr (D ORI )

(m—s+ 1!/ (m—-s—t)(t+ 1)L

Hence
S = (t + 1)Em75+17

and so AsJ
% — Z (1) azas - a1 Zm—si1] -

This result, with (193), completes the inductive proof of formula (194).

Now the functions Jp,_s—¢; are evidently simultaneous invariants of the

binary forms a, ag?, agr, aﬁ,‘l. We shall show in the next paragraph that

the expressions
Im—s—t,t = Dagt — DJm—s—tﬂt(S =2,3,---,mt=0,1,--- ,m— 5)

are, in reality, seminvariants of the form fs,, as a whole.

STRUCTURE OF A TERNARY FORM

The structure of the right-hand member of the equality (194) shows at once that
the general (factorable or non-factorable) quantic fs,,(D # 0) can be reduced
to the following form:

Fon =TT (1P =0+ 0) + 3

k=1 s=2 t=

m—

(ast — Jm—s—t,0)x?°"ah. (195)
0

»

This gives explicitly the “satellite” form of fs,,, with coefficients expressed ra-
tionally in terms of the coefficients of f3,,. It may be written

m m-—s AmfsitAtR
Dppn—2 = (Dast — L 27tm ) m—s—tyt
s:z:Q tz:% (—1)zmm=D (m — s — t)!! (196)
=22 Imesraat T e,
5=2 t=0
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Now the coefficients I,,,_s_ + are seminvariants of f3,,. To fix ideas let m = 3
and write the usual set of ternary operators,

Q g + 2 9 +3 9 + 9 + 2 9 +3 9
=« « Qo3 =—— + 11— Q19— a3 ——
1T 01 Do 02 Dao: 03 Daon 11 daro 12 dany 13 Daigy’
Q 3 9 + 2 9 + 9 + 2 9 + 0 + 9
oz = 30000 =—— gl =—— + apo—— « «@ o >
. 00 Oao1 ol Oaga 02 Oags 10 a1 M Oaia 20 Oazy
0 0 0 0
Qs = — +2 — +3 —_— — +2 e _—,
sz — Q20 Dm0 + 20110 Dang + 3o D1 + 0411(%21 + 2ai01 Dars + ap2 Dat

etc.

Then I is annihilated by Q,.,, but not by ;,.,, Io1 is annihilated by
Qu, 2, but not by Qu,.,, and Iy, is annihilated by 4, 4,, but not by Qg,,,. In
general I,,_,_;; fails of annihilation when operated upon by a general operator
2,2, which contains a partial derivative with respect to as. We have now
proved the second theorem.

8.2.4 The semi-discriminants

A necessary and sufficient condition that fs,, should degenerate into the product
of m distinct linear factors is that p,,—2 should vanish identically. Hence, since
the number of coefficients in fy,—2 is %m (m — 1), these equated to zero give a
minimum set of conditions in order that f3,, should be factorable in the manner
stated. As previously indicated we refer to these seminvariants as a set of semi-

discriminants of the form f3,,. They are

ATTSTEALR,, ( s
(=1)zmm=D¢l(m — s — )1 \ ¢

2,3,...,m;
They are obviously independent since each one contains a coefficient (as¢) not
contained in any other. They are free from adventitious factors, and each one
is of degree 2m — 1.
In the case where m = 2 we have

apo ap1r  Go2
+ ajp ail 0
0 aw a1

2a00 ao1

Ioo = —ag
apr  2ag2

This is also the ordinary discriminant of the ternary quadratic.
The three semi-discriminants of the ternary cubic are given in Table V. In
this table we have adopted the following simpler notation for the coefficients of

I

3 2 2 3
apr] + a1x7x2 + asx1x;5 + azxry

~
|

2 2
boxll'g + blell'Q.’Eg + b21’2$3

cox1x§ + 01x2x§

+ o+ +

3
d0$3.
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TABLE V

Lo —Io —Ioo
4ayazazby azazb3 azb?

—a3b3 —3aya3b? +ayagbob?
—9a3b? +atazb? +a?bob3
+3a1a3b§ —3a2a3b1 —2a2b0b§
—a3b? +a3b3 —azaznib;
+3a2b% —4a1a2b2 +a§bgb2
+6a1a3b0b2 +9a3b§ —2a1a3b(2)b2
—2@%()0[)2 —alagagbobl —a1a2b0b1b2
—|—a1a§b0b1 —|—2a%a3b0b2 —a2b§
+3a2a3bobl 76(120,31)01)2 7(11[)1[)%
—4a%a3b0b1 +4a§b1b2 +a2b%b2
+ajasb1by —3arasbiby —l—bg
—9a3b1b2 —a%agble —l—a?a%do
—ata3cy +afa3c; +18aqazasdy
—18aiasascy | +18ajasaszcy —4a§do
+dadcy —4a3c; —4a3azdy
+dataszcy —4a3aze; —27a§ dy
+27a3co —27a3c;

In the notation of (197) the seminvariants in this table are

Ioo Dasy + R,
Iy = Dagy+ A1Rs,
Ipn = Dag + AsRs,

where D is the discriminant of
_ 3 2 3
= agoxry + ap1xix2 + - - - + ap3Ty,
and R3 the resultant of a and
_ 2 2
B = a10r1 + ai1x129 + a12T.

Corresponding results for the case m = 4 are the following;:

1 .
IOO = —a40(4zi’ — J12) — R4,

27
where
. 2
i1 = agy — 3ap1a03 + 12a00a04,
2 2 3
Ji = 270,01 apq4 + 27&00&03 + 2ap, — 72000002004 — 901002003,
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aio aii ais a3 0 0
0 aio a1 a2 a3 O
R, = 0 0 aio aiy G2 013
ap1@10 — Q@11 Gp2d10 — QooG12 @03d10 — GooG13 aosdio O 0|’
ago ao1 ap2 aps  aps O
0 ago ap1 ap2 Qo3 Qo4

the other members of the set being obtained by operating upon R4 with powers
of Al, AQI

0 0 0
A1 = 4dagg=——+3 2 P —
1 ago Day + sao1 Day + 2agp2 P + aps Dars’
0 0 0
ANy = 4dagg—— + 3ag3—— + 2 P
2 Qo4 Dats + 3ap3 Dy + 2a02 3 + ao1 darg’

according to the formula

A%_s_tAngl

(4—s—t)lt! (s=2,3,4,t=0,1,....4— s).

Iy sty = agD —

8.2.5 Invariants of m-lines.

The factors of ag, being assumed distinct we can always solve I,,_s_;+ = 0

for ast, the result being obviously rational in the coefficients occurring in agy,
a~1. This proves the first theorem of IIT as far as the case D # 0 is concerned.
Moreover by carrying the resulting values of as (s = 2,3,...,m;t =0,1,...,m—
s) back into f3,, we get the general form of a ternary quantic which is factorable

into linear forms. In the result ag}, a’l';;l are perfectly general (the former,

however, subject to the negative condition D # 0), whereas

%m m—1 m—j A?Ln_ij m—j
(iD= e

AY Ry i .
ﬁl‘;ﬂ 7 (.722,3,,771)

m—j—1
AY AsRyy p—j1

(m—j—ym™ T2t

Thus the ternary form representing a group of m straight lines in the plane, or
in other words the form representing an m-line is, explicitly,

_..m m—1
f = Qg + L3071,

m m—j Mm—i—7 A g
; A IASRy i
+ D7 (=1)zmm= N 1 2 M h (198)

A (m—i—j)il !

This form, regarded as a linearly factorable form, possesses an invariant theory,
closely analogous to the theory of binary invariants in terms of the roots.

If we write af, = 3los, /0,03, = 23114, /2, (a00 = 1), and assume that the
roots of lo¢ = 0 are —rq, —r, —7r3, then the factored form of the three-line will
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be, by the partial fraction method of IIT (185),

3

f = H(l‘l + ;o — ll_”/l(/)_”).

i=1

Hence the invariant representing the condition that the 3-line f should be a
pencil of lines is

1 T1 ll—n /l6—r1

Q =11 T9 11_7«2/16_7.2 .

1 T3 ll—rs/l(/)—rg
This will be symmetric in the quantities 71,9, 73 after it is divided by VR,
where R = (r; — 12)?(r2 — r3)%(r3 — r1)? is the discriminant of the binary cubic
a3,. Expressing the symmetric function Q; = Q/ VR, in terms of the coeflicients
of a},, we have

2 2
Q1 = 2a5,a12 — ap1ao2a11 + Yagoapzair — 6agiapsaio + 2ageaio — 6apoao2ai2.

This is the simplest full invariant of an m-line f.

8.3 Modular Invariants and Covariants

Heretofore, in connection with illustrations of invariants and covariants under
the finite modular linear group represented by 7}, we have assumed that the
coefficients of the forms were arbitrary variables. We may, however, in connec-
tion with the formal modular concomitants of the linear form given in Chapter
VI, or of any form f taken simultaneously with L and @, regard the coefficients
of f to be themselves parameters which represent positive residues of the prime
number p. Let f be such a modular form, and quadratic,

2 2
f = apx] + 2012122 + ag75.

Let p = 3. In a fundamental system of formal invariants and covariants modulo
3 of f we may now reduce all exponents of the coefficients below 3 by Fermat’s
theorem,

a? = a;(mod3)(i = 0,1,2).

The number of individuals in a fundamental system of f is, on account of these
reductions, less than the number in the case where the a’s are arbitrary vari-
ables. We call the invariants and covariants of f, where the a’s are integral,
modular concomitants (Dickson). The theory of modular invariants and covari-
ants has been extensively developed. In particular the finiteness of the totality
of this type of concomitants for any form or system of forms has been proved.
The proof that the concomitants of a quantic, of the formal modular type, con-
stitute a finite, complete system has, on the contrary, not been accomplished up
to the present (December, 1914). The most advantageous method for evolv-
ing fundamental systems of modular invariants is one discovered by Dickson
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depending essentially upon the separation of the totality of forms f with partic-
ular integral coefficients modulo p into classes such that all forms in a class are
permuted among themselves by the transformations of the modular group given
by T,%. The presentation of the elements of this modern theory is beyond the
scope of this book. We shall, however, derive by the transvection process the
fundamental system of modular concomitants of the quadratic form f, modulo
3. We have by transvection the following results (cf. Appendix, 48, p. 241):

8.3.1 Fundamental system of modular quadratic form,

modulo 3.
TABLE VI
NOTATION | TRANSVECTANT CoNCcOMITANT (MoD 3)
A (f. f)? a? — agas
(£3,Q)° atas + apa3 + apa? + alag — a — a3
r3wy — 1173
(L, L)*L) af +afad + afad + af
aox% + 2a1x121 + agrrg

fa (f,Q)? aor} + a17370 + a1 2173 + azxh
1 (£3,Q)° (agar — a})at + (a0 — a2)(ai + agaz)z122 + (0 — ara3)z3
Co (2, Q)" (a2 + a? — apaz)x? + a1(ap + az)w172 + (a? + a3 — apas)x3

Also in ¢ and C; we may make the reductions a = a;(mod 3)(i = 0, 1,2). We
now give a proof due to Dickson, that these eight forms constitute a fundamental
system of modular invariants and covariants of f.

Much use will be made, in this proof, of the reducible invariant

I=(a2—1)(a?—1)(a3—-1)=¢*+A%*—-1 (mod 3).
In fact the linearly independent invariants of f are
1,A, 1, q, A% (i)

Proceeding to the proposed proof, we require the seminvariants of f. These are
the invariants under

r1 =2 +xh, 10 =25 (mod 3).
These transformations replace f by f’, where

ap = ag,a) = ag+ay,ah =ag —ay +az (mod 3). (t)
Hence, as may be verified easily, the following functions are all seminvariants:

ao, ag, ap, agA?, a2A, B = (a2 — 1)ay. (s)

2Transactions American Math. Society, Vol. 10 (1909), p. 123.
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Theorem. Any modular seminvariant is a linear homogeneous function of the
eleven linearly independent seminvariants (i), (s).

For, after subtracting constant multiples of these eleven, it remains only to
consider a seminvariant

2 2 2 2 2 2
S = aqa1a5 + azaias + asa + agaja; + asaias + agai + fas + vas,

in which aq,as are linear expressions in a2, ag, 1; and as, ..., ag are linear ex-
pressions in ag, 1; while the coefficients of these linear functions and 3, are
constants independent of ag,a1,as. In the increment to S under the above
induced transformations (¢) on the a’s the coefficient of a;a3 is —agay, whence
ay = 0. Then that of a3as is a; = 0; then that of ajas is 8 — apas, whence
B = as = 0; then that of a? is —ag = 0; then that of a; is —y — agag, whence
v = ag = 0. Now S = aga;, whose increment is aszag, whence az = 0 Hence
the theorem is proved.

Any polynomial in A, I, q, ag, B is congruent to a linear function of the eleven
seminvariants (i), (s) by means of the relations

I’=-1,¢?=1—-A%+1,
(A) IAN=Ig=Ilag=1IB=gqA=qB=0ayB=0,
AB = B,a3A% = A? + a2 A — A,
aoq = aA? —a, B> = A(1 —a})

(mod 3),

together with aj = ag, A> = A (mod 3).

Now we may readily show that any covariant, K, of order 6t is of the form
P + LC, where C is a covariant of order 6t — 4 and P is a polynomial in the
eight concomitants in the above table omitting f;. For the leading coefficient of
a modular covariant is a modular seminvariant. And if ¢ is odd the covariants

if3tiQt, C¥, C3t, (i an invariant)
have as coefficients of m‘ft
- 2
aot, i, B, A+ ag,

respectively. The linear combinations of the latter give all of the seminvariants
(), (s). Hence if we subtract from K the properly chosen linear combination
the term in 2§ cancels and the result has the factor 5. But the only covariants
having x5 as a factor are multiples of L. Next let ¢t be even. Then

3t 3t - p3t—3 3t—3 . At i=1,A,A%
f aAf aZQf anl allQ ) (Zl _ I,A,AQ,q.

have as coefficients of !
2 2 . .
ag, apA, aot, B, i1.

Lemma 6. If the order w of a covariant C of a binary quadratic form modulo
8 is not divisible by 3, its leading coefficient S is a linear homogeneous function
of the seminvariants (i), (s), other than 1,1,q.
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In proof of this lemma we have under the transformation z1 = x1/4+xo/, x5 =
1’2/,

C =8z + 128 g + ... = Sary + (S1 +wS)ary a4 ...
For a covariant C the final sum equals
Sary + Sixy " el + ..., St = Si(ap, dy, ab),
where a(), ... are given by the above induced transformation on the a’s. Hence
S — 51 = wS(mod 3).

Now write
Sy = kaZa?a3 +t (t of degree < 6),

and apply the induced transformations. We have

Sy = ka2(ag + a1)*(ap — ay + a2)?* + ' = kaZ(agr + a3 + ayay + a?al) +t/,

where 7 is of degree 3 and t’ of degree < 6. Hence
wS = k(aor + aka? + atayas) +t —t (mod 3).

Since w is prime to 3, S is of degree < 6. Hence S does not contain the term
a?a?a3, which occurs in I but not in any other seminvariant (i), (s). Next if
S =1+ o, where o is a function of ag, a1, as, without a constant term, IC' is a
covariant ¢’ with §" = I. Finally let S = ¢ + a1 + asA + a3A? +tB where t is
a constant and the «; are functions of ag. Then by (A)

gS=1—A%>+1+ g,

which has the term aZa?a? (from I). The lemma is now completely proved.
Now consider covariants C' of order w = 6t + 2. For t odd, the covariants

3t+1 t 3t+1 3t 3t
f anaC2 7f 02501 027
have as coefficients of ¢
2 2_ 2 2
ag,ao, A — agA + ag, apA + ap, B,

respectively. Linear combinations of products of these by invariants give the
seminvariants (s) and A, A%, Hence, by the lemma, ¢ = P + LC’, where P is a
polynomial in the covariants of the table omitting f;. For ¢ even the covariants

fQ QT CQ, CiQ!

have ag, a3, Delta + a2, B as coefficients of x¢.
Taking up next covariants C' of order w = 6t 4 4 coefficients of z% in

f1Q", F2Q", C1C2Q", CFQ!
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are, respectively, ag, a3, B, A — a3A. Linear combinations of their products by
invariants give all seminvariants not containing 1,7,q. Hence the eight con-
comitants of the table form a fundamental system of modular concomitants of
f (modulo 3). They are connected by the following syzygies:

fCL =2(A2 4+ A)L, fCa=(1+A)f
ngcfE(A+1)2f2,02§’fff4zA4Q } (mod 3).

No one of these eight concomitants is a rational integral function of the re-
maining seven. To prove this we find their expressions for five special sets of
values of ag, a1, as (in fact, those giving the non-equivalent fs under the group
of transformations of determinant unity modulo 3):

/ Al g Cy Cy Ja
M o0 |00 0 0 0
(2) z? 0 |-1 0 x? r]
B)| -2 |01 0 x3 —x7
4) [ a3 +23-1]0 0 0 z + a5
(5) | 2z1ze | 1] 0| —2f+23 | 27+ 23 | 220 + 2123

To show that L and @ are not functions of the remaining concomitants we
use case (1). For f4, use case (4). No linear relation holds between f,C7,Cs in
which C is present, since C is of index 1, while f,Cy are absolute covariants.
Now f # kCs by case (4); Co # kf by case (5). Next g # F(A) by (2) and (3);
A # F(q) by (4) and (5).
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Chapter 9

INVARIANTS OF
TERNARY FORMS

In this chapter we shall discuss the invariant theory of the general ternary form

fear=by—

Contrary to what is a leading characteristic of binary forms, the ternary f
is not linearly factorable, unless indeed it is the quantic (198) of the preceding
chapter. Thus f represents a plane curve and not a collection of linear forms.
This fact adds both richness and complexity to the invariant theory of f. The
symbolical theory is in some ways less adequate for the ternary case. Never-
theless this method has enabled investigators to develop an extensive theory of
plane curves with remarkable freedom from formal difficulties.

9.1 Symbolical Theory
As in Section 2 of Chapter VIII, let
fx) =al' = (a1m1 + agze + agzs)™ =by = --- .
Then the transformed of f under the collineations V (Chap. VIII) is
= (ax2y + a2y + ayxs)™. (199)

9.1.1 Polars and transvectants.

If (y1,y2,y3) is a set cogredient to the set (21, zq,x3), then the (y) polars of f
are (cf. (61))

fpo =al Fal(k=0,0,--- ,m). (200)

LClebsch, Lindemann, Vorlesungen iiber Geometrie.
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If the point (y) is on the curve f = 0, the equation of the tangent at (y) is

agay ' =0. (201)
The expression
o o
—Din—=1DYp—1)! | % 922 925
o PSR i | S0 (202)

9z1 Dz Oz y=z=z

is sometimes called the first transvectant of f(z), ¢(x), ¥(z), and is abbreviated

(f.¢,9). If
Jla) =alt = afm = pe) = b = I = ) = = P =
then, as is easily verified,
(fs:9)" = (abe)ay b~ "
This is the Jacobian of the three forms. The rth transvectant is
(f,¢,9)" = (abe)"ay* " by~ ™" (r = 0,1, ). (203)
For r = 2 and f = ¢ = 4 this is called the Hessian curve. Thus

(f: £, 1)* = (abe)?ap=2b; =22 = 0
is the equation of the Hessian. It was proved in Chapter I that Jacobians are
concomitants. A repetition of that proof under the present notation shows that
transvectants are likewise concomitants. In fact the determinant A in (202) is
itself an invariant operator, and

A" = (A\uv)A.

Illustration.

As an example of the brevity of proof which the symbolical notation affords for
some theorems we may prove that the Hessian curve of f = 0 is the locus of all
points whose polar conics are degenerate into two straight lines.

Ifg=a2=p2=" - =agoz?+ - is a conic, its second transvectant is its
discriminant, and equals

azo @110 @101
(@By)? = (O +a1B273)* =6 |an0 a0 aon|,

aior  aoir  @po2

since af = 82 = -+ = aggp etc. If (aBy)? = 0 the conic is a 2-line.
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Now the polar conic of f is

P=daja) ?=afa) P =,
and the second transvectant of this is
(P, P,P)? = (ad'a")?a) 2a)"2ay™ 2, (204)

But this is the Hessian of f in (y) variables. Hence if (y) is on the Hessian the
polar conic degenerates, and conversely.

Every symbolical monomial expression ¢ consisting of factors of the two
types (abc), a, is a concomitant. In fact if

¢ = (abe)?(abd)? - - - aiby - -+,

then
a) b)\ C)\p a) b,\ d)\q
¢ = ap by cul |ap by dy| -c-agbye-,
a, b, ¢ | la, b, d,
since, by virtue of the equations of transformation a/, = a,, ---. Hence by the
formula for the product of two determinants, or by (14), we have at once

o = ()P (abe)P (abd) - alby - = ()71,

The ternary polar of the product of two ternary forms is given by the same
formula as that for the polar of a product in the binary case. That is, formula
(77) holds when the forms and operators are ternary.

Thus, the formula for the rth transvectant of three quantics, e.g.

T=(f,0,9)" = (abe)"al~"by " cb™",

x

may be obtained by polarization: That is, by a process analogous to that em-
ployed in the standard method of transvection in the binary case. Let

(bc)1 = bgCg - bgcg, (bC)Q = b361 — blcg, (bc)3 = b162 — bZCl- (205)
Then
a(he) = (abc). (206)

Hence T may be obtained by polarizing a”* r times, changing y; into (bc); and
multiplying the result by b2~ "c2~". Thus

1 2\ /1 2\ /1
(aibz,ci,xi) = - [( >< >azayby + < >< >a§bm] Cy
3 \1/\1 2)\0 o)

2 1
= g(acd)(bcd)axcx + g(acd)szcx.

Before proceeding to further illustrations we need to show that there exists for
all ternary collineations a universal covariant. It will follow from this that a
complete fundamental system for a single ternary form is in reality a simulta-
neous system of the form itself and a definite universal covariant. We introduce
these facts in the next paragraph.
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9.1.2 Contragrediency.

Two sets of variables (21, z2, x3), (u1, us, us) are said to be contragredient when
they are subject to the following schemes of transformation respectively:

x1 =Mz + pxh + vk
Vixg = A&} + poxh + ok
T3 = A3T) + p3xh + vah
u'l = )\1U1 + )\QUQ + )\3U3

A u’z = M1u1 + Hous + H3us

’
Uz = VU] + VolUs + V3u3.

Theorem. A necessary and sufficient condition in order that (x) may be con-
tragredient to (u) is that

Uy = UIT] + U2T2 + U3T3
should be a universal covariant.

If we transform u, by V and use A this theorem is at once evident.

It follows, as stated above, that the fundamental system of a form f under
V', A is a simultaneous system of f and u, (cf. Chap. VI, §4).

The reason that u, = uix1 + usxs does not figure in the corresponding way
in the binary theory is that cogrediency is equivalent to contragrediency in the
binary case and u, is equivalent to (xy) = x1y2 — x2y1 which does figure very
prominently in the binary theory. To show that cogrediency and contragrediency
are here equivalent we may solve

!/
Uy = )\1’(L1 + )\2'&2

/
Uy = [1U + fh2U2,

we find
—(Ap)ur = Ay + pp(—uh),
(A)ug = Ayuy + pn (—uy),
which proves that y; = 4wus, y2 = —u; are cogredient to x1, x2. Then u,

becomes (yz) (cf. Chap. 1, §3, V).

We now prove the principal theorem of the symbolic theory which shows
that the present symbolical notation is sufficient to represent completely the
totality of ternary concomitants.

9.1.3 Fundamental theorem of symbolical theory.

Theorem. FEvery invariant formation of the ordinary rational integral type, of
a ternary quantic

m!
m mi . mso _ms3
f=a ——-~-——E —— O mama T T (g m'——m)
x < mylmglmg! AT T2 J ’
mj
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can be represented symbolically by three types of factors, viz.
(abc), (abu), a,
together with the universal covariant ug.
We first prove two lemmas.

Lemma 7. The following formula is true:

n

o 8 a n
SRS A9 Al A2 A3
n n — p—
A"D" =57 35 8| M1 p2 ps| =C, (207)
R S I YA

(1%} vy Ovs
where C' # 0 is a numerical constant.

In proof of this we note that D", expanded by the multinomial theorem,
gives

D" = Z Tliglial 1A (ovs = psvo) ™ (pava —pavs) ™ (pva—povn)”. (Z ij = ") :
ij
Also the expansion of A™ is given by the same formula where now (A, pusv4) is

replaced by (B%\T 625 B%t)' We may call the term given by a definite set i1, 42, i3

of the exponents in D", the correspondent of the term given by the same set of
exponents in A™. Then, in A" D™, the only term of D™ which gives a non-zero
result when operated upon by a definite term of A™ is the correspondent of that
definite term. But D™ may be written

D=3 NN () () ()
An easy differentiation gives
9 0 i i i _ (s . . i i ig—1
(30 ), (2 5 ) = i+ i+ s+ 1)) ) ™
and two corresponding formulas may be written from symmetry. These formulas

hold true for zero exponents. Employing them as recursion formulas we have
immediately for A" D™,

n

n! 2
AnD" = E_jo (M) (irtializ!)? (i1 + ia + i5 + 1))
= Zé(n!)z(wr = %(n!)B(n—l— 1)%(n +2). (208)

This is evidently a numerical constant C' # 0, which was to be proved (cf. (91)).
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Lemma 8. If P is a product of m factors of type ax, n of type B, and p of
type v, then AP is a sum of a number of monomials, each monomial of which
contains k factors of type (affy), m —k factors of type ax,n —k of type B,,, and
p—k of type v,

This is easily proved. Let P = ABC, where

A = el o,
B = Bl(Ll)ﬁl(f) e 5}(}1)7
C = AP
Then
. =1.---.m
0°P () (s (0 __ABC [T 70
- 000 @ = o /8 r}/ - @@ S = yon 7n
Om0p2dvs Zt R G B S WA P
Writing down the six such terms from AP and taking the sum we have
ABC
— (r) g(s) (1) -
AP_Z(a By ) ( (209)

T,8,t a’YT)B,i(LS)fYy)

which proves the lemma for k£ = 1, inasmuch as % has m — 1 factors; and
XN

so forth. The result for A*P now follows by induction, by operating on both
members of equation (209) by A, and noting that (a(’")ﬁ(s)v(t)) is a constant
as far as operations by A are concerned.

Let us now represent a concomitant of f by ¢(a, ), and suppose that it does
not contain the variables (u), and that the corresponding invariant relation is

(b(a/ax/v"') = ()\Mll)w(ﬁ(a7x7~-~). (210)
The inverse of the transformation V' is
oy = Auw) (1o + (uv)oxs + () ses)

etc. Or, if we consider (x) to be the point of intersection of two lines

Vg = U1X1 + V22 + U3T3,
Wy = WiT1 + W22 + W3Ts,
we have
x1:xe g3 = (vw)y : (vw)g @ (vw)s.
Substitution with these in z,--- and rearrangement of the terms gives for the
inverse of V
I VW, —v Wy
o= Q)
-1 . / — VyWH—UVUN\Wy
| T T P VI R
33/ _ VAW, =V W
3 (Auv)
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We now proceed as if we were verifying the invariancy of ¢, substituting
from V! for 2, x5, 2 on the left-hand side of (210), and replacing al,, .. m,
by its symbolical equivalent a\" aj;'2a;"* (cf. (199)). Suppose that the order of
¢ is w. Then after performing these substitutions and multiplying both sides of
(210) by (Auv)“ we have

QS(a;nlaleaTB? UNWy — U Wy, - - ) = ()\lu/)w"'w(;ﬁ(a’ Zyoee )7

and every term of the left-hand member of this must contain w 4w factors with
each suffix, since the terms of the right-hand member do. Now operate on both
sides by A. Each term of the result on the left contains one determinant factor
by lemma 2, and in addition w + w — 1 factors with each suffix. There will be
three types of these determinant factors e.g.

(abe), (avw) = ay, (abv).

The first two of these are of the form required by the theorem. The determinant
(abv) must have resulted by operating A upon a term containing ay, b, v, and
evidently such a term will also contain the factor w, or else wy. Let the term
in question be

Raxb,v,wy,.

Then the left-hand side of the equation must also contain the term

—Raxb,v,wy,
and operation of A upon this gives

—R(abw)v,,,
and upon the sum gives

R [(abv)w, — (abw)v,] .
Now the first identity of (212) gives
(abv)w,, — (abw)v, = (bvw)a, — (avw)b,, = bya, — buas.
Hence the sum of the two terms under consideration is
R(bza, —byaz),

and this contains in addition to factors with a suffix  only factors of the required
type a;. Thus only the two required types of symbolical factors occur in the
result of operating by A.

Suppose now that we operate by A¥*T* upon both members of the invariant
equation. The result upon the right-hand side is a constant times the concomi-
tant ¢(a,z) by lemma 1. On the left there will be no terms with A, u, v suffixes,
since there are none on the right. Hence by dividing through by a constant we
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have ¢(a,x) expressed as a sum of terms each of which consists of symbolical
factors of only two types viz.

(abe), az,

which was to be proved. Also evidently there are precisely w factors a, in each
term, and w of type (abc), and w = 0 if ¢ is an invariant.

The complete theorem now follows from the fact that any invariant formation
of f is a simultaneous concomitant of f and wu,. That is, the only new type of
factor which can be introduced by adjoining w,, is the third required type (abu).

9.1.4 Reduction identities.

We now give a set of identities which may be used in performing reductions.
These may all be derived from

ay, b, c| = (abo)(ay2), (211)
a, b, c,

as a fundamental identity (cf. Chap. III, §3, II). We let wj,us,us be the

coordinates of the line joining the points (z) = (21,22, 3), (y) = (y1,¥2,93).
Then

uy tug :uz = (xy)1 : (zy)2 : (xy)s.

Elementary changes in (211) give
(bed)a, — (cda)b, + (dab)e, — (abe)d, = 0,
(bew)ag — (cua)b, + (uab)e, — (abc)u, = 0, (212)
(abe)(def) — (dab)(cef) + (cda)(bef) — (bed)(aef) = 0.
Also we have

azby — ayby = (abu), (213)
Vawp — Vpw, = (abzx).
In the latter case (z) is the intersection of the lines v, w.

To illustrate the use of these we can show that if f = a2 = - - - is a quadratic,
and D its discriminant, then

(abc)(abd)cyd, = %Df.

In fact, by squaring the first identity of (212) and interchanging the symbols,
which are now all equivalent, this result follows immediately since (abc)? = D.
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9.2 Transvectant Systems

9.2.1 Transvectants from polars.

We now develop a standard transvection process for ternary forms.

Theorem. FEvery monomial ternary concomitant of f =all =---,

¢ = (abc)?(abd)? - - - (bed)" - - - (abu)® (beu)t - -a” - - -

is a term of a generalized transvectant obtained by polarization from a con-
comitant ¢1 of lower degree than ¢.

Let us delete from ¢ the factor a7, and in the result change a into v, where v
is cogredient to u. This result will contain factors of the three types (bev), (bed),
(buv), together with factors of type b,. But (uwv) is cogredient to z. Hence the
operation of changing (uv) into x is invariantive and (buv) becomes b,. Next
change v into u. Then we have a product ¢, of three and only three types, i.e.

(beu), (bed), by,

¢1 = (bed)® - - - (beu)? - bYcd - - -

xTr T

Now ¢, does not contain the symbol a. Hence it is of lower degree than ¢. Let
the order of ¢ be w, and its class u. Suppose that in ¢ there are ¢ determinant
factors containing both a and w, and k& which contain @ but not u. Then

oc+i+k=m.

Also the order of ¢ is
w) =w+2i+k—m,

and its class

p=p—i+k.

We now polarize ¢1, by operating (vtf;%)k(ya%)i upon it and dividing out the
appropriate constants. If in the resulting polar we substitute v = a, y = (au)

and multiply by a™~*~* we obtain the transvectant (generalized)

ki

T = (¢1, a7, ug) (214)

The concomitant ¢ is a term of 7.
For the transvectant 7 thus defined k + ¢ is called the indez. In any ternary

concomitant of order w and class p the number w +  is called the grade.
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DEFINITION.

The mechanical rule by which one obtains from a concomitant
C= Aalza2x T Qg O 02yt Qs

any one of the three types of concomitants

C1 = A(010203) 04z - -+ Qra 1y Oy - -+ sy,
Cy = Aalal A2g ** * Apgp Q2 3y~ * * Oy,

Cs = A(a10003) a1 -+~ Qrg Oy -+~ Qs

is called convolution. In this a;,, indicates the expression
a11011 + areai2 + a3 3.

Note the possibility that one o might be x, or one a might be u.

9.2.2 The difference between two terms of a transvectant.

Theorem. . The difference between any two terms of a transvectant T equals
reducible terms whose factors are concomitants of lower grade than T, plus a
sum of terms each term of which is a term of a transvectant T of index < k+1,

_ T N
T = (¢laa;n’uz:) :

In this ¢, is of lower grade than ¢1 and is obtainable from the latter by convo-
lution.

Let ¢1 be the concomitant C' above, where A involves neither u nor z. Then,
with A numerical, we have the polar

o\ oY
P=Xv— —
(U Gu) (y Ox ) 91
=A Z A1yQ2y * ** Ay Qi 1y~ Arg Wy * Ay A1y * °° Algy (215)
Now in the ith polar of a simple product like

P ="Y1zV2zx - - - Vtxs

two terms are said to be adjacent when they differ only in that one has a factor
of type ynyvj» Whereas in the other this factor is replaced by 7v4,7;,. Consider
two terms, tq,t2 of P. Suppose that these differ only in that ap,oruarya;jz in
t1 is replaced in t3 by gy 0cp@ngajy. Then t; — 2 is of the form

t1 — to = B(0toQulhy@jz — Oy QlpGhaiy)-
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We now add and subtract a term and obtain
t1 — to = Blou 0w (AhyGja — Qhaljy) + Qha @y (0ny iy — puiey)]. (216)

Each parenthesis in (216) represents the difference between two adjacent terms
of a polar of a simple product, and we have by (213)

t1 —to = B(yz(ana;)) oyt + Blagay (uv))ongajy. (217)

The corresponding terms in 7 are obtained by the replacements v = a, y = (au).
They are the terms of

S = —B'((au)(ana;)r)aan . — B ((auw)asay)(ajau)ap,,

or, since
((aw)(anay)e) = (aana;)u; — (anaju)ag.,

of

S = B'(apa;u) a0ty — B (apa;a) a0ty

+ B'(ayax(au))(ajau)an,,

where B becomes B’ under the replacements v = a, y = (au). The middle
term of this form of S is evidently reducible, and each factor is of lower grade
than 7. By the method given under Theorem I the first and last terms of S are
respectively terms of the transvectants

1 k-1
= (B1(ana;u) 0y ey, ay', ul D) B

x ) x

il

m i1 k—1,i+1
xT 7u:1; ) N

= (Bi(aay)ajzane, a

o'l

The middle term is a term of

m i,l)kfl,z'ﬂ .

73 = (—Bi(ana;u)amy e, ay', u

x ) x X

In each of these B; is what B becomes when v = u,y = x; and the first form in
each transvectant is evidently obtained from u,¢; = Cu, by convolution. Also
each is of lower grade than ¢;.

Again if the terms in the parentheses in form (216) of any difference ¢, —t are
not adjacent, we can by adding and subtracting terms reduce these parentheses
each to the form 2

(T —72) + (2 —73) + - (o1 — 1), (218)

2Isserlis. On the ordering of terms of polars etc. Proc. London Math. Society, ser. 2, Vol.
6 (1908).
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where every difference is a difference between adjacent terms, of a simple polar.
Applying the results above to these differences 7; — 7,11 the complete theorem
follows.

As a corollary it follows that the difference between the whole transvectant
7 and any one of its terms equals a sum of terms each of which is a term
of a transvectant of @’ with a form ¢; of lower grade than ¢; obtained by
convolution from the latter. For if

T:l/17'1+l/2T2+"'+VTTT+"'

where the v’s are numerical, then 7, is a term of 7. Also since our transvectant
T is obtained by polarization, Y v; = 1. Hence

T—m=v(n—7)+tra(n-—1)+

and each parenthesis is a difference between two terms of 7. The corollary is
therefore proved.

Since the power of u, entering 7 is determinate from the indices k, ¢ we may
write 7 in the shorter form

T = (¢1,al")"".

The theorem and corollary just proved furnish a method of deriving the
fundamental system of invariant formations of a single form f = a* by passing
from the full set of a given degree i — 1, assumed known, to all those of the
fundamental system, of degree i. For suppose that all of those members of the
fundamental system of degrees < ¢ — 1 have been previously determined. Then
by forming products of their powers we can build all invariant formations of
degree i — 1. Let the latter be arranged in an ordered succession

¢Iv ¢//7 ¢///7 e

in order of ascending grade. Form the transvectants of these with a™,7; =
(¢, @)%, If 7; contains a single term which is reducible in terms of forms of
lower degree or in terms of transvectants 7;, 7/ < j, then 7; may, by the theorem
and corollary, be neglected in constructing the members of the fundamental
system of degree ¢. That is, in this construction we need only retain one term
from each transvectant which contains no reducible terms. This process of con-
structing a fundamental system by passing from degree to degree is tedious for
all systems excepting that for a single ternary quadratic form. A method which
is equivalent but makes no use of the transvectant operation above described,
and the resulting simplifications, has been applied by Gordan in the derivation
of the fundamental system of a ternary cubic form. The method of Gordan
was also successfully applied by Baker to the system of two and of three conics.
We give below a derivation of the system for a single conic and a summary of
Gordan’s system for a ternary cubic (Table VII).
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9.2.3 Fundamental systems for ternary quadratic and cu-

bic.
Let f = a2 =b2 = ---. The only form of degree one is f itself. It leads to the
transvectants
(a2,62)%! = (abu)azb, = 0, (a2,b2)%? = (abu)* = L.

Thus the only irreducible formation of degree 2 is L. The totality of degree 2
is, in ascending order as to grade,

(abu)?, a2b?.

All terms of (f2, f)¥' are evidently reducible, i.e. contain terms reducible by
means of powers of f and L. Also

((abu)?, c2)"0 = (abe)(abu)c,

1 1 2
= g(abc) [(abu)cy + (bew)ay + (cau)by] = g(abc) Uy,

((abu)?,c2)*° = (abc)? = D.

Hence the only irreducible formation of the third degree is D. Passing to degree
four, we need only consider transvectants of fL with f. Moreover the only
possibility for an irreducible case is evidently

(fL, /)*! = (abd)(abu)(cdu)c,

= i(abu)(cdu)[(abd)cx + (bed)ay + (dea)b, + (ach)d,] = 0.

All transvectants of degree > 4 are therefore of the form
(f"L7, )5 i+ k< 3),
and hence reducible. Thus the fundamental system of f is
Ug, f, L, D.

The explicit form of D was given in section 1. A symmetrical form of L in
terms of the actual coefficients of the conic is the bordered discriminant

a200 (L110 a101 U1
. a110 a020 aoll U9
) a101 aoll a002 us '

Uy (5] us 0

To verify that L equals this determinant we may expand (abu)? and express
the symbols in terms of the coefficients.

We next give a table showing Gordan’s fundamental system for the ternary
cubic. There are thirty-four individuals in this system. In the table, ¢ indicates
the degrees.

The reader will find it instructive to derive by the methods just shown in the
case of the quadratic, the forms in this table of the first three or four degrees.
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TABLE VII

) INVARIANT FORMATION

0 | uy

1 |a

2 | (abu)?a,b

3 | (abu)?(bcu)asc2,as = (abc)?a,byc., s5 = (abe)(abu)(acu)(bcu)
4 | (acu)a2a?,ass%a2,S = a3,pS = (abu)?(cdu)?(beu)(adu)

5 | assZ(abu)a b2, asbss,aZb?, as(abu)?s2b,, to = asbss, (abu)?

6 | asbssu(bcu)abycr,ass? (abu)?(beu)c?, aitza2, T = a}

7 | $2p7 (spx), ast? (abu)agb?, aibit,aZb?, a.t? (abu)?b,

8 | aibsty(beu)azbyc2, S = arbicraZbic?, ast (abu)?(beu)cs, s2t2 (stx)
9 | (aqu)aq>, pit2(ptx), ars>t,a2(stx)

10 | a¢bis2a2bi(stx), arsot, (abu)?b,(stx)

11 | (aqu)aiq;

12 | (aaq)azazqy, pasaty (pst)

9.2.4 Fundamental system of two ternary quadrics.

We shall next define a ternary transvectant operation which will include as
special cases all of the operations of transvection which have been employed
in this chapter. It will have been observed that a large class of the invariant
formations of ternary quantics, namely the mixed concomitants, involve both
the (z) and the (u) variables. We now assume, quite arbitrarily, two forms
involving both sets of variables e.g.

¢ = AalzCLZx Qg O 2yttt Qlgyyy
w = BblIbQI e bpmﬂluﬁZu co 50717

in which A, B are free from (z) and (u). A transvectant of ¢, and ¢ of four
indices, the most general possible, may be defined as follows: Polarize ¢ by the
following operator,

WO (0 INT (O @O\ (2 2\ (=20
Z (yl &r) (y2 Bsc) (y” Ox N oz Y2 oz Yo oz

W IN (0 INT  (wINT (@2 (@I (@2
% <U1 8u> <v2 8u> (U” ou "1 By "2 By Y Bu

wherein €;,¢;,0;,v; =0 or 1, and

Ze:i,Zsz,ZOZk,Zuzl; i+jSr k+1Zs.
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Substitute in the resulting polar

(a) yé;’ =8, (p=12...,9),
(b) y1(7 ) = (bpu) (p = 1a2a . ’j)a
(c) U,E,;; = b (pi 1,2,....k),
(d) UP - (6px) (p - ]-727 '71)7

and multiply each term of the result by the b,, 5, factors not affected in it. The

7

resulting concomitant 7 we call the transvectant of ¢ and v of index (]i’ Jl) ,

and write .
7= (V)
An example is
(01002000, b1ab2aBu) 1y = a1pou, (azbiu) + aipon, (azbou)

+  aggap, (a1biu) + asgan, (a1bou).

If, now, we introduce in place of ¢ successively products of forms of the funda-
mental system of a conic, i.e. of

f=ad>L=a?=(dd"u)? D= (ada")?
and for ¢ products of forms of the fundamental system of a second conic,
g — bi,L/ — ,85 — (blb/lu)z,D, — (bb/bﬂ)Q,

we will obtain all concomitants of f and g. The fundamental simultaneous
system of f, g will be included in the set of transvectants which contain no
reducible terms, and these we may readily select by inspection. They are 17 in
number and are as follows:

© = (a2,02)05 = (abu)?,

Ci = (a2,b3)00 = (abu)asb,
A = (a2,B2)50 = a3,

Cy = (62,8050 = apasPu,

Cs = (a2,b3)70 = wubs,
Ang = (of,b2)30 = o,

Cs = (af,82)0) = (aBw)awfu,
F o= (a2,805 = (afx)?,

Cs = (o, 0282)1) = ap(aB)bsfu,
Co = (a2,b2B2)050 = ap(abu)byBu,
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C; = (aiai, bi)(l):(l) = ap(abu)ag o,

Cs = (aiai,ﬁﬁ)éz? = ag(afr)azo,

G = (fLgL')y} = apon(afz)ash,

T = (fLgL'), = apay(abu)afu,
Ky = (fL,gL) = aglabu)ay(aBa)b,,
Ky = (fL,gL')}1 = ap(abu)Bu(afz)as,
Ky = (fL,gL) = agap(abu)(afBe)

The last three of these are evidently reducible by the simple identity

aq by ay

(abu)(afz) =|ag bg Bul.

az by Uy

The remaining 14 are irreducible. Thus the fundamental system for two ternary
quadrics consists of 20 forms. They are, four invariants D, D', A115, A122; four
covariants f, g, F', G; four contravariants L, L', ®, T'; eight mixed concomitants
Ci, (i=1,...,8).

9.3 Clebsch’s Translation Principle

Suppose that (y), (z) are any two points on an arbitrary line which intersects
the curve f = al' = 0. Then
uy tug tug = (yz): (Y2)2 1 (y2)3

are contragredient to the z’s. If (x) is an arbitrary point on the line we may
write
Ty = Mmy1 + 1221, T2 = MYz +N222, T3 = MY3 + 0223,

and then (71, 72) may be regarded as the coordinates of a representative point
(z) on the line with (y), (2) as the two reference points. Then a, becomes

Ay = Q121 + G2%2 + A3T3 = MGy + 202,

and the (1) coordinates of the m points in which the line intersects the curve
f =0 are the m roots of

m o __

9=gy" = (aym +a.n2)™ = (bym +bon2)™ = -+

Now this is a binary form in symbolical notation, and the notation differs from
the notation of a binary form h = a}* = (a1x1 + agw2)™ = ... only in this, that
a1, ag are replaced by ay, a., respectively. Any invariant,

I = Z k(ab)P(ac)?---,
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of h has corresponding to it an invariant I of g,

I= Z k(ayb, —azby)P(ayc, —azcy)?--- .

If I = 0 then the line cuts the curve f = a}' = 0 in m points which have the
protective property given by I; = 0. But (cf. (213)),

(ayb. — azby) = (abu).
Hence,

Theorem. If in any invariant. Iy = 3 k(ap)?(ac)?--- of a binary form h =
al® = (a1x1 + agxa)™ = --- we replace each second order determinant (ab)
by the third order determinant (abu), and so on, the resulting line equation
represents the envelope of the line u, when it moves so as to intersect the curve
f=al = (a1x1 + asxa + azx3)™ = 0 in m points having the protective property
I; =0.

By making the corresponding changes in the symbolical form of a simulta-
neous invariant I of any number of binary forms we obtain the envelope of wu,
when the latter moves so as to cut the corresponding number of curves in a
point range which constantly possesses the projective property I = 0. Also this
translation principle is applicable in the same way to covariants of the binary
forms.

For illustration the discriminant of a binary quadratic h = a2 =2 = --- is
D = (ab)?. Hence the line equation of the conic f = a2 = (a121+axz2+azr3)* =
coo=01s
L = (abu)? = 0.

For this is the envelope of u, when the latter moves so as to touch f = 0, i.e.
so that D = 0 for the range in which u, cuts f = 0.
The discriminant of the binary cubic h = (a;@1 + asx2)® = b3 = -+ is

R = (ab)?*(ac)(bd)(cd)?.

Hence the line equation of the general cubic curve f = a3 = --- is (cf. Table

x
VII)
pS = L = (abu)?(acu)(bdu)(cdu)? = 0.
We have shown in Chapter I that the degree ¢ of the discriminant of a binary

form of order m is 2(m — 1). Hence its index, and so the number of symbolical
determinants of type (ab) in each term of its symbolical representation, is

1
k= iimzm(m—l).

It follows immediately that the degree of the line equation, i.e. the class of a
plane curve of order m is, in general, m(m — 1).
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Two binary forms h; = a”* = a™ = ..., hg = b = ..., of the same order
have the bilinear invariant
I=(ab)™

If I = 0 the forms are said to be apolar (cf. Chap. III, (71)); in the case m = 2,
harmonic. Hence (abu)™ = 0 is the envelope of u; = 0 when the latter moves
5o as to intersect two curves f = al' = 0,9 = b)* = 0, in apolar point ranges.
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APPENDIX
EXERCISES AND THEOREMS

1. Verify that I = apas — 4ajaz + 3a3 is an invariant of the binary quartic
f= aoac‘ll + 4a1x:15x2 + 6a2x%x§ + 4a3m1x§’, +a4ac§

for which
I' = (\p)*l.

2. Show the invariancy of
a1(apr1 + a1x2) — ag(arxr + aszs),
for the simultaneous transformation of the forms

f = apx1 + a9,

2 2
g = apx] + 2a171T2 + a2x;.

Give also a verification for the covariant C of Chap. I, §1, V, and for Jy o of
Chap. II, §3.
3. Compute the Hessian of the binary quintic form

4
f= aozi’ + dajxTra + . ...

The result is

1
§H = (apag — a2)z% + 3(agas — araz)x s + 3(agay + aras — 2a2) i
+ (apas + Tayay — 8agaz)x3x3 + 3(aras + agaj — 2a3)x3x)

+ 3(agas — azaq)x1rs + (azas — a?)xs.

4. Prove that the infinitesimal transformation of 3-space which leaves the
differential element,
o = dz? + dy* + dz*

invariant, is an infinitesimal twist or screw motion around a determinate invari-
ant line in space. (A solution of this problem is given in Lie’s Geometrie der
Beriihrungstransformationen §3, p. 206.)

5. The function

2 2 2 2 3 3
q = agpas + apas + apaiy + ajas — ag — as,
is a formal invariant modulo 3 of the binary quadratic

f = aox? + 2a12115 + agx? (Dickson)

6. The function agas 4+ ajas is a formal invariant modulo 2 of the binary
cubic form.
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7. Prove that a necessary and sufficient condition in order that a binary
form f of order m may be the mth power of a linear form is that the Hessian
covariant of f should vanish identically.

8. Show that the set of conditions obtained by equating to zero the 2m — 3
coefficients of the Hessian of exercise 7 is redundant, and that only m — 1 of
these conditions are independent.

9. Prove that the discriminant of the product of two binary forms equals
the product of their discriminants times the square of their resultant.

10. Assuming (y) not cogredient to (z), show that the bilinear form

f= E GikTiYk = 61121Y1 + a12T1Y2 + a21T2Y1 + G22X2Y2,
has an invariant under the transformations

L= 1§y + B1&e, 2 = 11& + 61,
"y = o + Banz, Y2 = yamu + S22,

in the extended sense indicated by the invariant relation

ay  ah _ ™ 51][042 52][6111 az1y
ajy Y1 012 02arz as

11. Verify the invariancy of the bilinear expression
Hpg = a11b22 + az2b11 — a12b21 — az1b12,

for the transformation by 7 of the two bilinear forms

=) anwiye.g =) birwiyk-

12. As the most general empirical definition of a concomitant of a single
binary form f we may enunciate the following: Any rational, integral function
¢ of the coefficients and variables of f which needs, at most, to be multiplied
by a function 1 of the coefficients in the transformations 7', in order to be
made equal to the same function of the coefficients and variables of f’, is a
concomitant of f.

Show in the case where ¢ is homogeneous that 1) must reduce to a power of
the modulus, and hence the above definition is equivalent to the one of Chap.
I, Section 2. (A proof of this theorem is given in Grace and Young, Algebra of
Invariants, Chapter II.)

13. Prove by means of a particular case of the general linear transformation
on p variables that any p-ary form of order m, whose term in z7* is lacking, can
always have this term restored by a suitably chosen linear transformation.

14. An invariant ¢ of a set of binary quantics

_ m _ n _ P
fi=aoz!" + -, fo=boxy + -, fa=cor; + -,
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satisfies the differential equations

0 0 0 0
+2a1 5+ Mam—1 57— + by — + 2b

2.9 = (a dar Bas dam 00y Bbs
0
+ .”+CO({9701+.“)¢_0
0 0 0 0
— i Dy —— 4. _Y v
Z O¢ (may a0y + (m )as 9a, 4+ day, pr— + nby b

0 0

The covariants of the set satisfy
0
O — o
(Z L2 3331) ¢
0

15. Verify the fact of annihilation of the invariant

I
o

|
e

ap aip a2
J=06|a1 a2 asg
G2 a3z Qa4

of the binary quartic, by the operators Q2 and O.

16. Prove by the annihilators that every invariant of degree 3 of the binary
quartic is a constant times J.

(SUGGESTION. Assume the invariant with literal coefficients and operate
by Q and O.)

17. Show that the covariant J4 o of Chap. II, Section 3 is annihilated by

the operators
0 0
E Q- 1'2871‘1, E O — Iy 871‘2

18. Find an invariant of respective partial degrees 1 and 2, in the coefficients
of a binary quadratic and a binary cubic.
The result is

I = ao(b1b3 — b%) — al(bobg — ble) + ag(bgbg — b%)

19. Determine the index of I in the preceding exercise. State the circum-
stances concerning the symmetry of a simultaneous invariant.

20. No covariant of degree 2 has a leading coefficient of odd weight.

21. Find the third polar of the product f - g, where f is a binary quadratic
and ¢ is a cubic.

The result is

(fg)y3 = %(fgy?’ + 6fygy2 + 3fy2.gy)'
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22. Compute the fourth transvectant of the binary quintic f with itself.
The result is

(f, ))* = 2(apas—4araz+3a3)x3 +2(agas—3a1a4+2aza3)araz+2(ayas—4azas+3a3) ;.

23. If F = a3bZc,, prove

Fys = é) {(é) (g) (g) asbice + (é) G) (g’) azagzbybgc.
()G ()C) (ot
() () ()5}

24. Express the covariant
Q = (ab)*(ch)cta,

of the binary cubic in terms of the coefficients of the cubic by expanding the
symbolical ) and expressing the symbol combinations in terms of the actual
coefficients. (Cf. Table I.)

25. Express the covariant +j = ((f, f)*, f)? of a binary quintic in terms of
the symbols.

The result is

—j = (ab)?(be)?(ca)?azbyc, = —(ab)*(ac)(be)cs.

26. Let ¢ be any symbolical concomitant of a single form f, of degree i in the
coefficients and therefore involving ¢ equivalent symbols. To fix ideas, let ¢ be a
monomial. Suppose that the i symbols are temporarily assumed non-equivalent.
Then ¢, when expressed in terms of the coefficients, will become a simultaneous
concomitant ¢; of ¢ forms of the same degree as f, e.g.

f=aox!" + male—le +-,
fl = bol{n + mble_lxg + -y
fi,1 = l()(ET =+ mll.%ﬂlnilmg —+ e
Also ¢1 will be linear in the coefficients of each f, and will reduce to ¢ again
when we set b; = --- = l; = ai, that is, when the symbols are again made
equivalent. Let us consider the result of operating with

)= i—F i_ﬁ’_..._t'_ i_ 2
_pOBaO P 8&1 pmaam o p@a ’

upon ¢. This will equal the result of operating upon ¢, the equivalent of ¢,
and then making the changes



Now owing to the law for differentiating a product the result of operating %
J
upon ¢ is the same as operating

00, 0
8aj 8bJ 8ZJ
upon ¢1 and then making the changes b = --- = [ = a. Hence the operator

which is equivalent to ¢ in the above sense is

-(2)+(8) -+ (2)

When §; is operated upon ¢; it produces i concomitants the first of which is ¢
with the a’s replaced by the p’s, the second is ¢; with the b’s replaced by the
p’s, and so on. It follows that if we write
T = poxi" + mpra ey 4
and
¢ fr— (ab)r(ac)s .. .agbg ... s
we have for d¢ the sum of ¢ symbolical concomitants in the first of which the

symbol a is replaced by 7, in the second the symbol b by 7 and so forth.
For illustration if ¢ is the covariant @ of the cubic,

Q = (ab)*(ch)ctay,
then
5Q = (7b)*(cb)2m, + (am)?(em)cia, + (ab)? (7b)T2a,.

Again the operator § and the transvectant operator () are evidently per-
mutable. Let g, h be two covariants of f and show from this fact that

8(g,h)" = (dg,h)" + (g,6R)".

27. Assume
f=a,
A= (f,f)* = (ab)asby = A2,
Q= (£.(1:1)) = (DA, = (ab)*(h)as = Q2
R = (A,A)? = (ab)*(cd)*(ac)(bd),
and write

Q = Q) = Quai + 3Q1a7ws + 3Q21145 + Qa5
Then from the results in the last paragraph (26) and those in Table I of Chapter
111, prove the following for the Aronhold polar operator delta = (Q%)z

of =Q,
0A = 2(aQ)2axQx = 2(f7 Q)2 =0,

5Q = 200, (/, Q%) +(@.8) = —3 Y,
SR=4(A,(,Q)? =0,
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28. Demonstrate by means of Hermite’s reciprocity theorem that there is
a single invariant or no invariant of degree 3 of a binary quantic of order m
according as m is or is not a multiple of 4 (Cayley).

29. If f is a quartic, prove by Gordan’s series that the Hessian of the Hessian
of the Hessian is reducible as follows:

1 1 1
H, H)?, (H H)?)?=—-——Jf+-H|H*— —i®].
((H, B2, (H,H)P)? = T f o+ o0
Adduce general conclusions concerning the reducibility of the Hessian of the
Hessian of a form of order m.
30. Prove by Gordan’s series,

1, 1

(102 )2 = G2+ 35 (1)1,

where i = (f, f)*, and f is a sextic. Deduce corresponding facts for other values
of the order m.
31. If f is the binary quartic

_ 4 4 4
f_ax_bx_cx_a..7

show by means of the elementary symbolical identities alone that
() (@)W = 2 f - (ab)".
(SUGGESTION. Square the identity
2(ab)(ac)byce = (ab)?c® + (ac)?b? — (bc)?a?.)
32. Derive the fundamental system of concomitants of the canonical quartic
XP Yt 4 6mXx2y?,

by particularizing the a coefficients in Table II.

33. Derive the syzygy of the concomitants of a quartic by means of the
canonical form and its invariants and covariants.

34. Obtain the typical representation and the associated forms of a binary
quartic, and derive by means of these the syzygy for the quartic.

The result for the typical representation is

£ Fy) = € + BHE + 4T + (3if? — SH

To find the syzygy, employ the invariant .J.

35. Demonstrate that the Jacobian of three ternary forms of order m is a
combinant.

36. Prove with the aid of exercise 26 above that

(f, ¢)2r+1 _ (aa)2r+la;z—2r—1a;—2r—l
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is a combinant of f = al and ¢ = .

37. Prove that Q = (ab)(bc)(ca)azbyc,, and all covariants of ) are combi-
nants of the three cubics a2, b3, ¢3 (Gordan).

38. Let f and g be two binary forms of order m. Suppose that ¢ is any
invariant of degree i of a quantic of order m. Then the invariant ¢ constructed
for the form vif + vog will be a binary form F; of order ¢ in the variables?
v1,v2. Prove that any invariant of F; is a combinant of f,g. (Cf. Salmon,
Lessons Introductory to Modern Higher Algebra, Fourth edition, p. 211.)

39. Prove that the Cartesian equation of the rational plane cubic curve
_ 3 2 3(; _
T = o€t +anéi&e + -+ aizéy(i =1,2,3),

is

lagas z| lagasz| |apasz|
¢(x1, 22, 3) = |lagasz| |agasz|+ |arazz| |arazz|| = 0.
|agasx| layasx| |asasx|

40. Show that a binary quintic has two and only two linearly independent
seminvariants of degree five and weight five.
The result, obtained by the annihilator theory, is

Magas—5agayas+10a3a?az—10agadas+4ad)+p(agas—a?)(adaz—3apa as+2a}).

41. Demonstrate that the number of linearly independent seminvariants of
weight w and degree ¢ of a binary form of order m is equal to

where (w; i, m) denotes the number of different partitions of the number w into
i or fewer numbers, none exceeding m. (A proof of this theorem is given in
Chapter VII of Elliotts’ Algebra of Quantics.)

42. If f =a’ =b}' =--- is a ternary form of order m, show that

(f, f)O,Qk — (abu)Qka;n—ka;n—Qk'

Prove also

s 1 *\ (m —2k\ (m — 2k .

((ﬁf)o’zk»f) T= WZ ( ; )( c— g )(abc)
s 1=0

X(abu)Qk_r(bCU)s_i(aC’u, iag@—i—Zkb;n—s+i—2kcgm—r—s.

43. Derive all of the invariant formations of degrees 1, 2, 3, 4 of the ternary
cubic, as given in Table VII, by the process of passing by transvection from
those of one degree to those of the next higher degree.

44. We have shown that the seminvariant leading coefficient of the binary
covariant of f = al’,

¢ = (ab)P(ac)? - alb? ---
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is
b0 = (ab)(ac)" - afb -

If we replace a; by a,, by by b, etc. in ¢y and leave ag, ba, - - - unchanged, the
factor (ab) becomes

(alxl + a2$2)b2 — (b1.’171 + ngg)az = (ab)xl.

At the same time the actual coefficient a, = ai"~"a} of f becomes

(m—r)orf

m! Ozl

a

m—r
x

ay =

Hence, except for a multiplier which is a power of z; a binary covariant may be
derived from its leading coefficient ¢ by replacing in ¢q, ag, a1, - - , @y, respec-
tively by

1 af 1 *f N (m—r)!of Lomf

]

f

"m Oz’ m(m — 1) 03’ m!  dz5’ T m! oz

Ilustrate this by the covariant Hessian of a quartic.
45. Prove that any ternary concomitant of f = a}' can be deduced from its
leading coefficient (save for a power of u,) by replacing, in the coefficient, apqr,

by
p! oNY o\ .
i) (+32)
(Cf. Forsyth, Amer. Journal of Math., 1889.)
46. Derive a syzygy between the simultaneous concomitants of two binary
quadratic forms f, g (Chap. VI).
The result is
=2J7 = D1g° + Daf* — 2hfy,

where Jio is the Jacobian of the two forms, h their bilinear invariant, and Dy,
Dy the respective discriminants of f and g.
47. Compute the transvectant

(f7 f)0’2 = (abu)2axbxa

of the ternary cubic
3 3 3! p,..4q,.7
f =0, = bx = E :p!qlr!apqrxlx2‘r37

in terms of its coefficients apq. (P + ¢+ = 3).

The result for %(f, f)%2 is given in the table below. Note that this mixed
concomitant may also be obtained by applying Clebsch’s translation principle
to the Hessian of a binary cubic.
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a%u% LC%'U/lUQ x%u% (E%Ul’LLQ {E%UQ’Lbl x%u%
a1200102 | 2a111G201 | @102a300 | 22100111 2a2010210 | @3000120
—a3;; | —2a010a102 | —a3g1 | —2a120a201 | —2a111a300 | —a3;0
xlxgu% T1X2U1UL l’lxgu% T1T2U1U3 .’L‘1$2U2’u§ 111’2“%
a1200012 2a3,, a102G210 | 202100021 | 202010120 | @3000030
+a102a030 | —2a102a120 | +a300Q012
+2a201a021
x%u% LC%'L“UQ 1’%’&% (E%’Ullu?, {I?%UQ’ng (E%Ug
ap300012 | 2Go210111 | @o120210 | 21200021 201110120 | @2100030
—a3y | —2a120a012 | —aiy; | —2a030a111 | —2ap21a210 | —aiyg
l’lIgU% L1T2U1UZ 1’11311,% T1x3U1U3 T1X3U2U3 xlmgug
41200003 2a201a012 3003003 2a1,, 202100102 (1200021
—2a111a012 | —2a210a002 | —201G102 | —2a201G021 | —2a3000012 | —2a111a210
+a102a021 —2a1200201 +a300a021
+0a2100012
‘7521'31&% ToT3UIUY (EQZL’g’LL% ToT3U1U3 ToT3UU3 £L’2.’L‘3U§
0303003 2a021a102 ap12a201 2a120a012 2031, 2100021
—ao210012 | —2a120a003 | —2a1110102 | —2a030G102 | —20021a201 | —2a1200111
+a210a003 —2a210a012 | +a0300201
+2a120a102
miu% x%ulug x§u§ m%ulug $§U2U3 m§u§
ap21a003 | 200120102 | G003@201 | 2a111G01 201020111 | G201G021
—ad, | —2a1m1a003 | —aly, | —2a021a102 | —2a012a201 | —aiyy

p > 2, has no covariant of odd order.
(Suggestion. Compare Chap. II, Section 2, IL. If X is chosen as a primitive

root, equation (48) becomes a congruence modulo p — 1.)
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48. Prove that a modular binary form of even order, the modulus being
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